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Proceedings

Linear Algebra and its Applications is pleased to announce a special issue on the occasion of the 24th
Conference of the International Linear Algebra Society (ILAS) at the National University of Ireland,
Galway, June 20-24, 2022. Papers corresponding to talks given at the conference should be submitted by
December 1, 2022 via the Elsevier Editorial System.

Special editors for ILAS 2022 issue are:

• Nicolas Gillis

• Rachel Quinlan

• Clément de Seguins Pazzis

• Helena Šmigoc

Peter Šemrl is the responsible Editor-in-Chief of LAA for this special issue.



Schedule Overview 4 Mornings

Schedules

Schedule Overview: mornings

Ti
m

e
M

o
n

d
ay

, J
u

n
e 

20
Tu

es
d

ay
, J

u
n

e 
21

W
ed

n
es

d
ay

, J
u

n
e 

22
Th

u
rs

d
ay

, J
u

n
e 

23
Fr

id
ay

, J
u

n
e 

24
9:

00

R
eg

is
tr

at
io

n
 a

n
d

 c
o

ff
ee

 
(f

ro
m

 8
:3

0)

P
le

n
ar

y 
3

N
ic

o
la

s 
G

ill
is

O
'F

la
he

rt
y 

Th
ea

tr
e

H
is

to
ri

ca
l t

o
u

r 
o

n
 t

h
e 

n
o

n
n

eg
at

iv
e 

ra
n

k

P
le

n
ar

y 
5

C
lé

m
en

t 
d

e 
Se

gu
in

s 
Pa

zz
is

O
'F

la
he

rt
y 

Th
ea

tr
e

D
ec

o
m

p
o

si
n

g 
m

at
ri

ce
s 

in
to

 q
u

ad
ra

ti
c 

o
n

es

C
o

n
fe

re
n

ce
 p

h
o

to

P
le

n
ar

y 
7

M
is

h
a 

Ki
lm

er
 (

SI
A

G
/L

A
 L

ec
tu

re
)

O
'F

la
he

rt
y 

Th
ea

tr
e

B
ri

d
gi

n
g 

th
e 

d
iv

id
e:

 f
ro

m
 m

at
ri

x 
to

 
te

n
so

r 
al

ge
b

ra
 fo

r 
o

p
ti

m
al

 
ap

p
ro

xi
m

at
io

n
 a

n
d

 c
o

m
p

re
ss

io
n

P
le

n
ar

y 
9

Sh
m

u
el

 F
ri

ed
la

n
d

 (
LA

M
A

 L
ec

tu
re

)
O

'F
la

he
rt

y 
Th

ea
tr

e

R
an

k 
o

f 
a 

te
n

so
r 

an
d

 q
u

an
tu

m
 

en
ta

n
gl

em
en

t

9:
00

9:
30

Fá
ilt

e!
 

O
p

en
in

g 
re

m
ar

ks
 (

09
:5

0)

9:
30

10
:0

0
P

le
n

ar
y 

1
Pa

u
l v

an
 D

o
o

re
n

 (
Is

ra
el

 G
o

h
b

er
g 

IL
A

S-
IW

O
TA

 L
ec

tu
re

)
O

'F
la

he
rt

y 
Th

ea
tr

e

St
ro

n
gl

y 
m

in
im

al
 s

el
f-

co
n

ju
ga

te
 

lin
ea

ri
za

ti
o

n
s 

fo
r 

p
o

ly
n

o
m

ia
l a

n
d

 
ra

ti
o

n
al

 m
at

ri
ce

s

C
o

ff
ee

C
o

ff
ee

C
o

ff
ee

&
Po

st
er

 s
es

si
o

n
C

o
ff

ee

10
:0

0

10
:3

0
Pa

ra
lle

l S
es

si
o

n
 3

(1
20

 m
in

s 
- 

4 
ta

lk
s)

M
2:

 N
o

n
n

eg
at

iv
e 

m
at

ri
ce

s 
(A

C
21

4)
M

4:
 Q

u
an

tu
m

 In
fo

rm
at

io
n

 (
A

n
d

er
so

n
)

M
5:

 C
o

m
b

. m
at

ri
x 

th
eo

ry
 (

A
C

20
1)

M
7:

 G
en

er
al

 p
re

se
rv

er
s 

(A
C

21
5)

M
8:

 D
is

ta
n

ce
 m

at
ri

ce
s 

o
f 

gr
ap

h
s 

(A
C

20
2)

M
9:

 L
in

ea
r 

al
ge

b
ra

 e
d

u
ca

ti
o

n
 (

O
’

Fl
ah

er
ty

)
M

22
: C

o
d

in
g 

th
eo

ry
 (

A
C

21
3)

C
o

nt
ri

b
u

te
d

 3
A

 a
n

d
 M

10
 (

A
C

20
3)

C
o

nt
ri

b
u

te
d

 3
B

 (
A

C
20

4)

Pa
ra

lle
l S

es
si

o
n

 5
(9

0 
m

in
s 

- 
3 

ta
lk

s)
 M

4:
 Q

u
an

tu
m

 in
fo

rm
at

io
n

 (
A

n
d

er
so

n
)

M
6:

 In
v.

 E
ig

. P
ro

b
. f

o
r 

gr
ap

h
s 

(A
C

21
3)

M
7:

 G
en

er
al

 p
re

se
rv

er
s 

(A
C

21
5)

M
10

: N
u

m
er

ic
al

 li
n

ea
r 

al
ge

b
ra

 fo
r 

PD
Es

 
(A

C
20

1)
M

15
: C

o
m

p
an

io
n

 m
at

ri
x 

fo
rm

s 
(D

’A
rc

y 
Th

o
m

p
so

n
)

M
16

: R
io

rd
an

 a
rr

ay
s 

(A
C

21
4)

M
18

: K
em

en
y'

s 
co

n
st

an
t 

(O
’F

la
h

er
ty

)
M

20
: S

p
ec

ia
l m

at
ri

ce
s 

(A
C

20
3)

C
o

nt
ri

b
u

te
d

 5
A

 (
A

C
20

4)
C

o
nt

ri
b

u
te

d
 5

B
 (

A
C

20
2)

Pa
ra

lle
l S

es
si

o
n

 6
(1

20
 m

in
s 

- 
4 

ta
lk

s)

M
8:

 D
is

ta
n

ce
 m

at
ri

ce
s 

o
f 

gr
ap

h
s 

(A
C

20
2)

M
10

: N
u

m
er

ic
al

 li
n

ea
r 

al
ge

b
ra

 fo
r 

PD
Es

 
(A

C
20

1)
M

11
: L

eg
ac

y 
o

f 
R

ic
h

ar
d

 B
ru

al
d

i (
O

’
Fl

ah
er

ty
)

M
15

: C
o

m
p

an
io

n
 m

at
ri

x 
fo

rm
s 

(D
’A

rc
y 

Th
o

m
p

so
n

)
M

18
: K

em
en

y'
s 

co
n

st
an

t 
(A

C
21

5)
M

21
: T

en
so

rs
 (

A
C

21
4)

M
22

: C
o

d
in

g 
Th

eo
ry

 (
A

C
21

3)
C

o
nt

ri
b

u
te

d
 6

A
 (

A
C

20
4)

C
o

nt
ri

b
u

te
d

 6
B

 (
A

n
d

er
so

n
)

Pa
ra

lle
l S

es
si

o
n

 8
(1

20
 m

in
s 

- 
4 

ta
lk

s)

M
4:

 Q
u

an
tu

m
 in

fo
rm

at
io

n
 (

A
n

d
er

so
n

)
M

5:
 C

o
m

b
. m

at
ri

x 
th

eo
ry

 (
A

C
20

1)
M

9:
 L

in
ea

r 
al

ge
b

ra
 e

d
u

ca
ti

o
n

 (
O

’
Fl

ah
er

ty
)

M
15

: C
o

m
p

an
io

n
 m

at
ri

x 
fo

rm
s 

(D
’A

rc
y 

Th
o

m
p

so
n

)
M

16
: R

io
rd

an
 a

rr
ay

s 
(A

C
21

4)
M

17
: D

es
ig

n
s 

an
d

 c
o

d
es

 (
A

C
20

2)

10
:3

0

11
:0

0
Pa

ra
lle

l S
es

si
o

n
 1

(1
20

 m
in

s 
- 

4 
ta

lk
s)

 M
3:

 C
o

p
o

si
ti

ve
 m

at
ri

ce
s 

(D
’A

rc
y 

Th
o

m
p

so
n

)
M

4:
 Q

u
an

tu
m

 in
fo

rm
at

io
n

 (
A

n
d

er
so

n
)

M
5:

 C
o

m
b

. m
at

ri
x 

th
eo

ry
 (

A
C

20
1)

M
7:

 G
en

er
al

 p
re

se
rv

er
s 

(A
C

21
5)

M
13

: R
ig

id
it

y 
&

 m
at

ri
x 

co
m

p
le

ti
o

n
 

(A
C

20
4)

M
16

: R
io

rd
an

 a
rr

ay
s 

(A
C

21
4)

M
17

: D
es

ig
n

s 
an

d
 c

o
d

es
 (

A
C

20
2)

C
o

nt
ri

b
u

te
d

 1
 (

A
C

20
3)

11
:0

0

11
:3

0
11

:3
0

12
:0

0
P

le
n

ar
y 

6
C

ri
st

ia
n

e 
Tr

et
te

r
O

'F
la

he
rt

y 
Th

ea
tr

e

Fr
o

m
 f

in
it

e 
to

 in
fi

n
it

e 
d

im
en

si
o

n
s:

 
C

h
an

ce
s 

an
d

 c
h

al
le

n
ge

s 
in

 s
p

ec
tr

al
 

th
eo

ry

12
:0

0

12
:3

0

Lu
n

ch
Lu

n
ch

P
le

n
ar

y 
10

V
ilm

ar
 T

re
vi

sa
n

O
'F

la
he

rt
y 

Th
ea

tr
e

Ei
ge

nv
al

u
e 

Lo
ca

ti
o

n
 o

f 
Sy

m
m

et
ri

c 
M

at
ri

ce
s

12
:3

0

13
:0

0

Lu
n

ch
Ex

cu
rs

io
n

s

13
:0

0



Schedule Overview 5 Afternoons

Schedule Overview: afternoons
Ti

m
e

M
o

n
d

ay
, J

u
n

e 
20

Tu
es

d
ay

, J
u

n
e 

21
W

ed
n

es
d

ay
, J

u
n

e 
22

Th
u

rs
d

ay
, J

u
n

e 
23

Fr
id

ay
, J

u
n

e 
24

Ex
cu

rs
io

n
s

Sl
án

 g
o

 fó
ill

! 
En

d
 o

f 
co

n
fe

re
n

ce

14
:0

0
Pa

ra
lle

l S
es

si
o

n
 4

 (
12

0 
m

in
s 

- 
4 

ta
lk

s)
 M

1:
 G

ra
p

h
 s

p
ec

tr
a 

(A
C

20
2)

M
3:

  C
o

p
o

si
ti

ve
 m

at
ri

ce
s 

(D
’A

rc
y 

Th
o

m
p

so
n

) 
M

11
: L

eg
ac

y 
o

f 
R

ic
h

ar
d

 B
ru

al
d

i (
O

’
Fl

ah
er

ty
) 

M
12

: M
at

ri
x 

p
o

si
ti

vi
ty

 (
A

C
20

1)
M

14
: H

is
to

ry
 o

f 
lin

ea
r 

al
ge

b
ra

 (
A

n
d

er
so

n
)

M
21

: T
en

so
rs

 fo
r 

si
gn

al
s 

&
 s

ys
te

m
s 

(A
C

21
5)

M
22

: C
o

d
in

g 
Th

eo
ry

 (
A

C
21

3)
C

o
nt

ri
b

u
te

d
 4

A
 (

A
C

20
3)

C
o

nt
ri

b
u

te
d

 4
B

 (
A

C
20

4)

Pa
ra

lle
l S

es
si

o
n

 7
(9

0 
m

in
s 

- 
3 

ta
lk

s)

M
3:

 C
o

p
o

si
ti

ve
 m

at
ri

ce
s 

(D
’A

rc
y 

Th
o

m
p

so
n

)
M

6:
 In

v.
 E

ig
. P

ro
b

. f
o

r 
gr

ap
h

s 
(A

C
21

3)
M

10
: N

u
m

er
ic

al
 li

n
. a

lg
. f

o
r 

PD
Es

 (
A

C
20

1)
M

13
: R

ig
id

it
y 

&
 m

at
ri

x 
co

m
p

le
ti

o
n

s 
(A

C
20

4)
M

15
: C

o
m

p
an

io
n

 m
at

ri
x 

fo
rm

s 
(A

n
d

er
so

n
)

M
16

: R
io

rd
an

 a
rr

ay
s 

(A
C

21
4)

M
17

: D
es

ig
n

s 
an

d
 c

o
d

es
 (

A
C

20
2)

M
18

: K
em

en
y’

s 
co

n
st

an
t 

(O
’F

la
h

er
ty

)
M

S2
0:

 S
p

ec
ia

l m
at

ri
ce

s 
(A

C
20

3)
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

C
o

nt
ri

b
u

te
d

 7
 (

A
C

21
5)

14
:0

0

14
:3

0
Pa

ra
lle

l S
es

si
o

n
 2

 (
12

0 
m

in
s 

- 
4 

ta
lk

s)
 M

1:
 G

ra
p

h
 s

p
ec

tr
a 

(D
’A

rc
y 

Th
o

m
p

so
n

)
M

2:
 N

o
n

n
eg

at
iv

e 
m

at
ri

ce
s 

(A
n

d
er

so
n

)
M

6:
 In

v.
 E

ig
. P

ro
b

. f
o

r 
gr

ap
h

s 
(A

C
21

3)
M

9:
 L

in
ea

r 
al

ge
b

ra
 e

d
u

ca
ti

o
n

 (
O

’F
la

h
er

ty
)

M
12

: M
at

ri
x 

p
o

si
ti

vi
ty

 (
A

C
20

1)
M

20
: S

p
ec

ia
l m

at
ri

ce
s 

(A
C

20
3)

M
21

: T
en

so
rs

 (
A

C
21

5)
C

o
nt

ri
b

u
te

d
 2

A
 (

A
C

21
4)

C
o

nt
ri

b
u

te
d

 2
B

 (
A

C
20

2)

14
:3

0

15
:0

0
15

:0
0

15
:3

0
C

o
ff

ee
&

Po
st

er
 s

es
si

o
n

15
:3

0

16
:0

0

C
o

ff
ee

P
le

n
ar

y 
8

M
o

n
iq

u
e 

La
u

re
nt

O
'F

la
he

rt
y 

Th
ea

tr
e

G
ra

p
h

s,
 c

o
p

o
si

ti
ve

 m
at

ri
ce

s,
 a

n
d

 s
u

m
s 

o
f 

sq
u

ar
es

 o
f 

p
o

ly
n

o
m

ia
ls

16
:0

0

16
:3

0

C
o

ff
ee

P
le

n
ar

y 
4

Pa
tr

ic
k 

Fa
rr

el
l

O
'F

la
he

rt
y 

Th
ea

tr
e

R
ey

n
o

ld
s-

ro
b

u
st

 p
re

co
n

d
it

io
n

er
s 

fo
r 

th
e 

st
at

io
n

ar
y 

in
co

m
p

re
ss

ib
le

 N
av

ie
r-

St
o

ke
s 

an
d

 M
H

D
 e

q
u

at
io

n
s

16
:3

0

17
:0

0
P

le
n

ar
y 

2
Pa

u
lin

e 
va

n
 d

en
 D

ri
es

sc
h

e 
(H

an
s 

Sc
h

n
ei

d
er

 
Pr

iz
e 

Le
ct

u
re

)
O

'F
la

he
rt

y 
Th

ea
tr

e

Li
n

ea
r 

A
lg

eb
ra

 is
 E

ve
ry

w
h

er
e:

 a
 D

u
o

 o
f 

Ex
am

p
le

s 
fr

o
m

 M
at

h
em

at
ic

al
 B

io
lo

gy

IL
A

S 
B

u
si

n
es

s 
M

ee
ti

n
g

O
'F

la
he

rt
y 

Th
ea

tr
e

17
:0

0

17
:3

0

IL
A

S 
B

o
ar

d
 M

ee
ti

n
g

17
:3

0



Monday, 20 June 2022 6

Monday, 20 June, Morning

10:00 O’Flaherty Theatre Plenary Sessions Paul Van Dooren p21
Strongly minimal self-conjugate linearizations for polynomial and rational matrices

11:00 AC203 Contrib. 1 James R. Weaver p250
Blocked Triangular Patterns and their Symmetry Groups

11:30 AC203 Contrib. 1 Richard Hollister p251
Majorization and Triangular Polynomial Matrices

12:00 AC203 Contrib. 1 D. Steven Mackey p252
Spectral Localization in Polynomial and Rational Matrices

12:30 AC203 Contrib. 1 Edward Poon p253
Circular higher rank numerical range and factorization of singular matrix polynomials

11:00 D’Arcy Thompson MS-3 Damjana Kokol Bukovšek p47
Completely positive factorizations associated with Euclidean distance matrices corresponding to an . . .

11:30 D’Arcy Thompson MS-3 Helena Šmigoc p48
Symmetric Nonnegative Trifactorization Rank

12:00 D’Arcy Thompson MS-3 Qinghong Zhang p49
The Maximal Angle between 5× 5 Positive Semidefinite and 5× 5 Non-negative matrices

12:30 D’Arcy Thompson MS-3 Mirjam Dür p50
Factorization of Completely Positive Matrices

11:00 Anderson MS-4 Julio de Vicente p58
Asymptotic survival of genuine multipartite entanglement in noisy quantum networks depends on the t. . .

11:30 Anderson MS-4 Alexander Müller-Hermes p59
Entanglement annihilation between cones

12:00 Anderson MS-4 Sander Gribling p60
Mutually unbiased bases: polynomial optimization and symmetry

12:30 Anderson MS-4 Mizanur Rahaman p61
An Extension of Bravyi-Smolin’s Construction for UMEBs

11:00 AC201 MS-5 Michael Tait p71
Two conjectures on the spread of graphs

11:30 AC201 MS-5 Mark Kempton p72
Algebraic Connectivity and the Laplacian Spread

12:00 AC201 MS-5 Sebastian M. Cioabă p73
Spectral Moore Theorems for Graphs and Hypergraphs

12:30 AC201 MS-5 Xiaohong Zhang p74
Oriented Cayley graphs with all eigenvalues being rational multiples of each other

11:00 AC215 MS-7 Antonio M. Peralta p93
Distance-preserving bijections between sets of invertible elements in unital Jordan-Banach algebras

11:30 AC215 MS-7 Tamás Titkos p94
On isometric rigidity of Wasserstein spaces

12:00 AC215 MS-7 Jerónimo Alaminos p95
On property (B) and zero product determined Banach algebras



Monday, 20 June 2022 7

11:00 AC204 MS-13 Derek Kitson p152
Graph rigidity in cylindrical spaces

11:30 AC204 MS-13 Signe Lundqvist p153
When is a rod configuration infinitesimally rigid?

12:00 AC204 MS-13 John Hewetson p154
Global Rigidity of Frameworks in Non-Euclidean Normed Planes

11:00 AC214 MS-16 Minho Song p179
Enumerative results for connected bipartite non-crossing geometric graphs

11:30 AC214 MS-16 Bumtle Kang p180
On claw-free Toeplitz graphs

12:00 AC214 MS-16 Naiomi T. Cameron p181
A Riordan Array Approach to Some Problems involving Lattice Paths, Trees and Partitions

11:00 AC202 MS-17 Santiago Barrera Acevedo p190
Cocyclic Two-Circulant Core Hadamard Matrices

11:30 AC202 MS-17 Andrea Švob p199
On some constructions of divisible design Cayley graphs and digraphs

12:00 AC202 MS-17 Guillermo Nuñez Ponasso p192
The Maximal Determinant Problem and Generalisations

12:30 AC202 MS-17 Ian Wanless p193
Perfect 1-factorisations and Hamiltonian Latin squares



Monday, 20 June 2022 8

Monday, 20 June, Afternoon

14:30 AC214 Contrib. 2A Marina Arav p255
A characterization of signed graphs with stable maximum nullity at most two

15:00 AC214 Contrib. 2A Hein van der Holst p257
A topological characterization of signed graphs with stable positive semidefinite maximum nullity a. . .

15:30 AC214 Contrib. 2A Milica Andelić p258
Inverse of a signless Laplacian matrix of a non-bipartite graph

16:00 AC214 Contrib. 2A Vicenç Torra p259
Graph addition: properties for its use for graph protection

14:30 AC202 Contrib. 2B Frank Uhlig p254
New Connections between Static Matrices A, Zhang Neural Networks, and Parameter-Varying Matrix Fl. . .

15:00 AC202 Contrib. 2B Tom Asaki p256
Null-Space Projects for Intermediate Students: Tomography, Cryptography, and More

14:30 D’Arcy Thompson MS-1 Margarida Mitjana p32
PageRank: a different point of view

15:00 D’Arcy Thompson MS-1 Suil O p33
Eigenvalues, spanning trees, and connected parity factors in regular graphs

15:30 D’Arcy Thompson MS-1 Luiz Emilio Allem p34
Randić Energy and Index

16:00 D’Arcy Thompson MS-1 James Borg p35
Graphs Reconstructible from One Card and a One–Dimensional Eigenspace

14:30 Anderson MS-2 Miriam Pisonero p40
Universal Realizability in Dimension 5 with Trace Zero: nonreal case

15:00 Anderson MS-2 Carlos Marijuán p41
Universal Realizability in Dimension 5 with Trace Zero: real case

15:30 Anderson MS-2 Robert Perry, Jonathan Ta p42
Kronecker Products of Perron Similarities

14:30 AC213 MS-6 Shaun Fallat p83
On the maximum multiplicity of the kth largest eigenvalue of a graph.

15:00 AC213 MS-6 Franklin Kenter p84
A zero forcing menagerie: the ordered multiplicity inverse eigenvalue sequence problem, powers of g. . .

15:30 AC213 MS-6 Mary Flagg p85
The Strong Nullity Interlacing Property

16:00 AC213 MS-6 Bryan Curtis p86
Strong Spectral Norm Property

14:30 O’Flaherty MS-9 Anthony Cronin and Sepideh Stewart p110
Analysis of Tutors’ Feedback After Responding to Linear Algebra Students’ Queries

15:00 O’Flaherty MS-9 Ann Sophie Stuhlmann p111
Interactionist perspective on negotiation processes of students’ different understandings during s. . .

15:30 O’Flaherty MS-9 Michelle Zandieh p112
Linear combinations of vectors in Inquiry-Oriented Linear Algebra (IOLA)

16:00 O’Flaherty MS-9 John Sheekey p113
Incorporating Tensors into Linear Algebra Courses
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14:30 AC201 MS-12 Paul Barry p144
Riordan arrays: structure and positivity

15:00 AC201 MS-12 Prateek Kumar Vishwakarma p145
Positivity preservers forbidden to operate on diagonal blocks

15:30 AC201 MS-12 Daniel Carter p146
An Atomic Viewpoint of the Totally Positive Completion Problem

16:00 AC201 MS-12 Mika Mattila p147
Maximizing the number of positive eigenvalues of an LCM matrix

14:30 AC203 MS-20 Susana Furtado p211
Efficient vectors for perturbed consistent matrices

15:00 AC203 MS-20 Richard Ellard p212
An algorithmic approach to the Symmetric Nonnegative Inverse Eigenvalue Problem

15:30 AC203 MS-20 Sirani M. Perera p213
A Low-complexity Algorithm to Uncouple the Mutual Coupling Effect in Antenna Arrays

16:00 AC203 MS-20 Natália Bebiano p214
The periodic pseudo-Jacobi inverse eigenvalue problem

14:30 AC215 MS-21 Borbala Hunyadi p221
Structured Tensor Decompositions in Functional Neuroimaging: Estimating the Hemodynamic Response

15:00 AC215 MS-21 Vicente Zarzoso p222
Tensor Decomposition of ECG Records for Persistent Atrial Fibrillation Analysis

15:30 AC215 MS-21 Orly Alter p223
Multi-Tensor Decompositions for Personalized Cancer Medicine

16:00 AC215 MS-21 Nico Vervliet p224
A quadratically convergent proximal algorithm for nonnegative tensor decomposition

17:00 O’Flaherty Theatre Plenary Sessions Pauline van den Driessche p22
Linear Algebra is Everywhere: a Duo of Examples from Mathematical Biology
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Tuesday, 21 June, Morning

09:00 O’Flaherty Theatre Plenary Sessions Nicolas Gillis p23
Historical tour on the nonnegative rank

10:30 AC203 Contrib. 3A Ivana Šain Glibić p261
Importance of the deflation process for the solution of quartic eigenvalue problem

11:00 AC203 Contrib. 3A Avleen Kaur p262
How the Friedrichs angle leads to lower bounds on the minimum singular value

11:30 AC203 Contrib. 3A George Hutchinson p264
On the enumeration and properties of complex matrix scalings

10:30 AC204 Contrib. 3B Dmitry Savostyanov p260
Tensor product approach to epidemiological models on networks

11:00 AC204 Contrib. 3B Ryan Wood p263
Dynamic Katz and Related Network Measures

11:30 AC204 Contrib. 3B Cheolwon Heo p265
The Complexity of the Matroid-homomorphism problems

12:00 AC204 Contrib. 3B Sophia Keip p266
Kirchberger’s Theorem for Complexes of Oriented Matroids

10:30 AC214 MS-2 Rapahel Loewy p43
On polynomials preserving nonnegative matrices

11:00 AC214 MS-2 A.M. Encinas p44
Bisymmetric Nonnegative Jacobi Matrix Realizations

11:30 AC214 MS-2 Julio Moro p45
A combinatorial characterization of lists realizable by compensation in the SNIEP

10:30 Anderson MS-4 Chi-Kwong Li p62
Some results and problems in Quantum Tomography

11:00 Anderson MS-4 Claus Koestler p63
Central limit theorems for braided coin tosses

11:30 Anderson MS-4 Darian Mclaren p64
Evaluating Quantum Instruments

10:30 AC201 MS-5 Rachel Quinlan p75
Alternating sign matrices of finite multiplicative order

11:00 AC201 MS-5 Jephian C.-H. Lin p76
Comparability and cocomparability bigraphs

11:30 AC201 MS-5 Gary Greaves p77
Spectral restrictions for certain symmetric ±1-matrices with applications to equiangular lines

12:00 AC201 MS-5 M.J. de la Puente p78
Orthogonality for (0,−1) tropical normal matrices

10:30 AC215 MS-7 Peter Šemrl p96
Automorphisms of effect algebras

11:00 AC215 MS-7 Mark Pankov p97
Adjacency preserving transformations of conjugacy classes of finite-rank self-adjoint operators

11:30 AC215 MS-7 Janko Bračič p98
Collineations of a linear transformation
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10:30 AC202 MS-8 Aida Abiad p103
Extending a conjecture of Graham and Lovász on the distance characteristic polynomial

11:00 AC202 MS-8 Projesh Nath Choudhury p104
Blowup-polynomials of graphs

11:30 AC202 MS-8 Carlos A. Alfaro p105
Distance ideals of graphs

12:00 AC202 MS-8 Lorenzo Ciardo p106
Two moments for trees

10:30 O’Flaherty MS-9 Sepideh Stewart, Anthony Cronin p114
Students’ Perspectives on Proofs in Linear Algebra: Ways of Thinking and Ways of Understanding in . . .

11:00 O’Flaherty MS-9 Megan Wawro p115
Student Reasoning about Linear Algebra in Quantum Mechanics

11:30 O’Flaherty MS-9 Amanda Harsy, Michael Smith p116
Application Approach to Teaching Linear Algebra

12:00 O’Flaherty MS-9 Frank Uhlig p117
16 Questions and Answers for a Modern first Linear Algebra and Matrix Theory Course

12:00 AC203 MS-10 Niall Madden p123
A boundary-layer preconditioner for singularly perturbed convection diffusion problems

10:30 AC213 MS-22 Geertrui Van de Voorde p234
The dual code of points and lines in a projective plane

11:30 AC213 MS-22 Ignacio F. Rúa p236
Codes over finite fields and Galois ring valued quadratic forms

12:00 AC213 MS-22 Gary McGuire p237
Linearized Polynomials and Galois Groups
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Tuesday, 21 June, Afternoon

14:00 AC203 Contrib. 4A Plamen Koev p267
Accurate Bidiagonal Decompositions of Structured Totally Nonnegative Matrices with Repeated Nodes

14:30 AC203 Contrib. 4A Michael Tsatsomeros p270
The Fiber of P-matrices: the Recursive Construction of All Matrices with Positive Principal Minors

15:00 AC203 Contrib. 4A Raquel Viaña p271
Accurate computation of the inverse of Totally Positive collocation matrices of the Lupaş-type (. . .

15:30 AC203 Contrib. 4A Adi Niv p273
Tropical Matrix Identities

14:00 AC204 Contrib. 4B Lauri Nyman p268
Perturbation theory of transfer function matrices

14:30 AC204 Contrib. 4B Patricia Antunes p269
Bi-additive Models: different types of distributions

15:00 AC204 Contrib. 4B Juyoung Jeong p272
Weak majorization inequalities in Euclidean Jordan algebras

15:30 AC204 Contrib. 4B Luis Felipe Prieto-Mart́ınez p274
Geometric continuity, Riordan matrices and applications

14:00 AC202 MS-1 Francesco Belardo p36
Identifying the graphs whose (Laplacian) spectral radius is small

14:30 AC202 MS-1 Cristina Dalfo p37
Almost Moore and largest mixed graphs of diameter two and three

15:00 AC202 MS-1 Ivan Damnjanović p38
Assigned rational functions of a rooted tree

14:00 D’Arcy Thompson MS-3 Roland Hildebrand p51
On the algebraic structure of the copositive cone

14:30 D’Arcy Thompson MS-3 Maxim Manainen p52
Generating extreme copositive matrices near matrices obtained from COP-irreducible graphs

15:00 D’Arcy Thompson MS-3 Jordi Tura p53
Entangled symmetric quantum states and copositive matrices

15:30 D’Arcy Thompson MS-3 Oliver Mason p54
Copositivity and the Riccati Equation

14:00 O’Flaherty MS-11 Geir Dahl p135
Richard, Matrices and Polyhedra

14:30 O’Flaherty MS-11 Seth A. Meyer p136
Loopy 2-graphs

15:00 O’Flaherty MS-11 K.-T. Howell, N. A. Neudauer p137
On the independence of near-vector spaces and their matroids

15:30 O’Flaherty MS-11 Gi-Sang Cheon p138
Richard’s mathematical legacy that influenced Korea

14:00 AC201 MS-12 Hugo J. Woerdeman p148
Completing an Operator Matrix and the Free Joint Numerical Radius

14:30 AC201 MS-12 Tomack Gilmore p149
Coefficientwise total positivity of some matrices defined by linear recurrences

15:00 AC201 MS-12 Miklós Pálfia p150
Free functions preserving certain partial orders of operators
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14:00 Anderson MS-14 Rachel Quinlan p159
The invention of character theory (via linear algebra)

14:30 Anderson MS-14 Zdeněk Strakoš p160
Seventieth anniversary of the conjugate gradient method and what do old papers reveal about our pre. . .

15:00 Anderson MS-14 Claude Brezinski p161
The life and the work of André Louis Cholesky

15:30 Anderson MS-14 Michela Redivo-Zaglia p162
P. Stein and R.L. Rosenberg

14:00 AC215 MS-21 Isabell Lehmann p225
Multi-task fMRI data fusion using Independent Vector Analysis and the PARAFAC2 tensor decomposition

14:30 AC215 MS-21 Christos Chatzichristos p226
Early soft and flexible fusion of EEG and fMRI via tensor decompositions for multi-subject group an. . .

15:00 AC215 MS-21 Mariya Ishteva p227
Parameter Estimation of Parallel Wiener-Hammerstein Systems by Decoupling their Volterra Representa. . .

15:30 AC215 MS-21 Eric Evert p228
Existence of best low rank approximations of positive definite tensors

14:00 AC213 MS-22 Jean-Guillaume Dumas p238
Dynamic Proofs of Retrievability and Verified Evaluation of Secret Dotproducts and Polynomials

14:30 AC213 MS-22 Altan Berdan Kılıç p239
One-Shot Capacity of Networks with Restricted Adversaries

15:00 AC213 MS-22 Jan De Beule p240
On Cameron-Liebler sets in projective spaces, and low degree Boolean functions

15:30 AC213 MS-22 Anurag Bishnoi p241
Trifferent codes and affine blocking sets

16:30 O’Flaherty Theatre Plenary Sessions Patrick E. Farrell p24
Reynolds-robust preconditioners for the stationary incompressible Navier–Stokes and MHD equations
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Wednesday, 22 June, Morning

09:00 O’Flaherty Theatre Plenary Sessions Clément de Seguins Pazzis p25
Decomposing matrices into quadratic ones

10:30 AC204 Contrib. 5A Milan Hlad́ık p275
Strong solvability of restricted interval systems and its applications in quadratic and geometric p. . .

11:00 AC204 Contrib. 5A Černý Martin p277
Monge-like properties in the interval setting

11:30 AC204 Contrib. 5A Matyáš Lorenc p279
Interval B-matrices, doubly B-matrices and BR

π -matrices

10:30 AC202 Contrib. 5B Niel Van Buggenhout p276
?-Lanczos procedure for non-autonomous ODEs

11:00 AC202 Contrib. 5B Paula Kimmerling p278
Average Mixing Matrices on Dutch Windmill Graphs

11:30 AC202 Contrib. 5B Paola Boito p280
Hub and authority centrality measures based on continuous-time quantum walks

10:30 Anderson MS-4 Travis B. Russell p65
Universal operator systems generated by projections

11:00 Anderson MS-4 Mark Howard p66
Quantum Advantage in Information Retrieval

11:30 Anderson MS-4 Michael Mc Gettrick p67
Matrices of interest in higher dimensional quantum walks

10:30 AC213 MS-6 Shahla Nasserasr p87
The Allows Problem for Graphs with Two Distinct Eigenvalues

11:00 AC213 MS-6 Polona Oblak p88
On the number of distinct eigenvalues of joins of two graphs

11:30 AC213 MS-6 Derek Young p89
Inverse eigenvalue and related problems for hollow matrices described by graphs

10:30 AC215 MS-7 Apoorva Khare p99
Preservers of moment sequences

11:00 AC215 MS-7 Dániel Virosztek p100
Barycenters of Hellinger distances and Kubo-Ando means as barycenters

11:30 AC215 MS-7 Lajos Molnár p101
Preservers related to the geometric mean and its variants

10:30 AC201 MS-10 Patrick E. Farrell p124
A scalable and robust vertex-star relaxation for high-order FEM

11:00 AC201 MS-10 Siobhán Correnty p125
Flexible infinite GMRES for parameterized linear systems

11:30 AC201 MS-10 Kirk M. Soodhalter p126
Analysis of block GMRES using a ∗-algebra-based approach
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10:30 D’Arcy Thompson MS-15 Javier Perez p164
Error bounds for matrix polynomial eigenvectors

11:00 D’Arcy Thompson MS-15 Andrii Dmytryshyn p165
Recovering a perturbation of a matrix polynomial from a perturbation of its companion matrix

11:30 D’Arcy Thompson MS-15 Aaron Melman p166
Applications of companion forms to eigenvalue bounds and scalar polynomials

10:30 AC214 MS-16 Homoon Ryu p182
Competition periods and matrix periods of Boolean Toeplitz matrices

11:00 AC214 MS-16 Tian-Xiao He p183
A Recursive Relation Approach to Riordan Arrays

11:30 AC214 MS-16 Gukwon Kwon p184
Riordan posets and associated matrix algebras

10:30 O’Flaherty MS-18 Àlvar Mart́ın p201
G-inverses for random walks

11:00 O’Flaherty MS-18 Federico Poloni p202
An edge centrality measure based on the Kemeny constant

11:30 O’Flaherty MS-18 Maŕıa José Jiménez p203
Mean first passage time for distance-biregular graphs

10:30 AC203 MS-20 João R. Cardoso p218
Some special matrices arising in computer vision and related optimization problems

10:30 AC203 MS-20 Domingos M. Cardoso p215
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions

11:00 AC203 MS-20 Christian Berg p216
Self-adjoint operators associated with Hankel moment matrices

11:30 AC203 MS-20 Rute Lemos p217
Inequalities for means of matrices

12:00 O’Flaherty Theatre Plenary Sessions Christiane Tretter p26
From finite to infinite dimensions: Chances and challenges in spectral theory
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Thursday, 23 June, Morning

09:00 O’Flaherty Theatre Plenary Sessions Misha Kilmer p27
Bridging the divide: from matrix to tensor algebra for optimal approximation and compression

10:00 Poster Session Blake McGrane-Corrigan p298
Diffusive Stability, Common Lyapunov Functions and Leslie Matrices

10:00 Poster Session John Stewart Fabila-Carrasco p295
The Cartesian product of graphs and entropy metrics for graph signals.

10:00 Poster Session Paula Kimmerling p297
Recursion of Eigenvectors in Dutch Windmill Graphs

10:00 Poster Session Priyanka Joshi p296
Powers of Karpelevič Arcs

10:00 Poster Session V A Kandappan p300
Hierarchical Off Diagonal Low Rank Matrices (HODLR) for problems in higher dimensions

10:00 Poster Session Victoria Sánchez Muñoz p299
The Mathematics behind the quantification of entanglement in Quantum Mechanics

10:30 AC204 Contrib. 6A Riadh ZORGATI p282
Projections, Lp Norms and Stochastic Matrices for Ill-Conditioned Linear Systems of Equations

11:00 AC204 Contrib. 6A Philippe Dreesen p284
Solving (Overdetermined) Polynomial Equations

11:30 AC204 Contrib. 6A Eric de Sturler p286
Efficient Computation of Parametric Reduced Order Models using Randomization

12:00 AC204 Contrib. 6A Alicia Roca p287
The change of the Weierstrass structure under one row perturbation

10:30 Anderson Contrib. 6B André Ran p281
Rational matrix solutions to p(X) = A

11:00 Anderson Contrib. 6B Héctor Orera p283
Bidiagonal decomposition and accurate computations with matrices of q-integers

11:30 Anderson Contrib. 6B Yinfeng Zhu p285
Hurwitz primitivity and synchronizing automata

12:00 Anderson Contrib. 6B Raf Vandebril p288
Construction of a sequence of orthogonal rational functions

10:30 AC202 MS-8 Leslie Hogben p107
Spectra of Variants of Distance Matrices of Graphs

11:00 AC202 MS-8 Carolyn Reinhart p108
The distance matrix and its variants for digraphs

10:30 AC201 MS-10 John W. Pearson p127
Preconditioned iterative methods for multiple saddle-point systems arising from PDE-constrained opt. . .

11:00 AC201 MS-10 Xiao-Chuan Cai p128
A recycling preconditioning method for crack propagation problems

11:30 AC201 MS-10 Michal Outrata p129
Preconditioning the Stage Equations of Implicit Runge Kutta Methods

12:00 AC201 MS-10 Daniel B. Szyld p130
Provable convergence rate for asynchronous methods via randomize linear algebra



Thursday, 23 June 2022 17

10:30 O’Flaherty MS-11 Michael William Schroeder (#35) p139
On the spectrum of graduate research projects with Richard Brualdi

11:00 O’Flaherty MS-11 John Goldwasser p140
Permanents of t-triangular (0, 1)-matrices

11:30 O’Flaherty MS-11 Jennifer J. Quinn p141
Determinants:Digraphs::Pfaffians:Matchings

12:00 O’Flaherty MS-11 Richard A. Brualdi p142
Pattern-Avoiding Permutation Matrices

10:30 D’Arcy Thompson MS-15 Luca Gemignani p167
Comparison Theorems for Splittings of M-matrices in block Hessenberg Form

11:00 D’Arcy Thompson MS-15 Kevin Vander Meulen p168
Using the Hessenberg Form of a Sparse Companion Matrix

11:30 D’Arcy Thompson MS-15 Gianna M. Del Corso p169
Orthogonal iterations on companion-like pencils

12:00 D’Arcy Thompson MS-15 Robert M. Corless p170
Algebraic Companions

10:30 AC215 MS-18 Ángeles Carmona p204
Schrödinger random walks and mean first passage time generalization

11:00 AC215 MS-18 Karel Devriendt p205
The resistance magnitude of a graph

11:30 AC215 MS-18 Manuel Miranda p206
Biased Advection operators on undirected graphs

12:00 AC215 MS-18 Steve Kirkland p207
Directed forests and the constancy of Kemeny’s constant

10:30 AC214 MS-21 Kim Batselier p229
Tensor-based methods for large-scale inverse problems in machine learning

11:00 AC214 MS-21 Gerwald Lichtenberg p230
Multilinear Modeling for Control and Diagnosis

11:30 AC214 MS-21 Jan Decuyper p231
Decoupling multivariate functions using a nonparametric filtered tensor decomposition

12:00 AC214 MS-21 Patrick Gelß p232
Tensor-based training of neural networks

10:30 AC213 MS-22 Heide Gluesing-Luerssen p242
Independent Spaces of q-Polymatroids

11:00 AC213 MS-22 Giuseppe Cotardo p243
Rank-Metric Lattices

11:30 AC213 MS-22 Anina Gruica p244
MRD Codes and the Average Critical Problem

12:00 AC213 MS-22 Ferdinando Zullo p245
From linear to non-linear functions over finite fields
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Thursday, 23 June, Afternoon

14:00 AC215 Contrib. 7 Madelein van Straaten p289
H-selfadjoint mth roots of H-selfadjoint matrices over the quaternions

14:30 AC215 Contrib. 7 Dawie Janse van Rensburg p290
An alternative canonical form for quaternionic H-unitary matrices.

15:00 AC215 Contrib. 7 M. Eulàlia Montoro p291
The combinatory under isomorphic lattices of hyperinvariant subspaces

14:00 D’Arcy Thompson MS-3 Naomi Shaked-Monderer p55
The {+,−, 0} sign patterns of inverse doubly nonnegative matrices and inver. . .

14:30 D’Arcy Thompson MS-3 Sachindranath Jayaraman p56
Linear preservers of copositive and completely positive matrices

14:00 AC213 MS-6 Rupert Levene p90
Spectral arbitrariness for trees fails spectacularly, I

14:30 AC213 MS-6 H. Tracy Hall p91
Spectral arbitrariness for trees fails spectacularly, II

14:00 AC201 MS-10 Davide Palitta p131
Matrix equation techniques for certain evolutionary partial differential equations

14:30 AC201 MS-10 Conor McCoid p132
Extrapolation methods as nonlinear Krylov methods

15:00 AC201 MS-10 V A Kandappan p133
A Domain Decomposition based preconditioner for Discretised Integral equations in two dimensions

14:00 AC204 MS-13 James Cruickshank p155
Global Rigidity for Line Constrained Frameworks

14:30 AC204 MS-13 Shin-ichi Tanigawa p156
A Characterization of Graphs of Super Stable Tensegrities

15:00 AC204 MS-13 Sean Dewar p157
The number of realisations of a minimally rigid graph in various geometries

14:00 Anderson MS-15 Vanni Noferini p171
DL(P ), Bézoutians, and the eigenvalue exclusion theorem for singular matrix polynomial. . .

14:30 Anderson MS-15 Maŕıa C. Quintana p172
Linearizations of rational matrices from general representations

15:00 Anderson MS-15 A. Satyanarayana Reddy p173
Primitive Companion Matrices

14:00 AC202 MS-17 Ferdinand Ihringer p194
The Density of Complementary Subspaces

14:30 AC202 MS-17 Eimear Byrne p195
q-Polymatroids and Designs over GF (q)

15:00 AC202 MS-17 Siripong Sirisuk p196
Enumeration of some matrices and free linear codes over finite commutative rings

14:30 O’Flaherty MS-18 Jane Breen p208
Kemeny’s constant for non-backtracking random walks

15:00 O’Flaherty MS-18 Robert E. Kooij p209
Kemeny’s Constant for Several Families of Graphs and Real-world Networks

14:00 AC203 MS-20 Mikhail Tyaglov p219
Tridiagonal matrices with two-periodic main diagonal

16:00 O’Flaherty Theatre Plenary Sessions Monique Laurent p28
Graphs, copositive matrices, and sums of squares of polynomials
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Friday, 24 June, Morning

09:00 O’Flaherty Theatre Plenary Sessions Shmuel Friedland p29
Rank of a tensor and quantum entanglement

10:30 AC201 MS-4 Victoria Sánchez Muñoz p68
Quantum Information: the Mathematics behind the quantification of quantum entanglement and the dist. . .

11:00 AC201 MS-4 J. Alejandro Chávez-Domı́nguez p69
Isoperimetric inequalities for quantum graphs

10:30 Anderson MS-5 Enide Andrade p79
Combinatorial Perron Parameters and Classes of Trees

11:00 Anderson MS-5 Sooyeong Kim p80
Kemeny’s constant for a chain of connected graphs with respect to a tree

11:30 Anderson MS-5 Minerva Catral p81
Minimum number of distinct eigenvalues allowed by a sign pattern

12:00 Anderson MS-5 Rachel Quinlan p75
Alternating sign matrices of finite multiplicative order

10:30 O’Flaherty MS-9 Emily J. Evans p118
From beginner to expert, increasing linear algebra fluency and comfort with Python labs.

11:00 O’Flaherty MS-9 Heather Moon and Marie Snipes p119
Inspiring Linear Algebra Topics Using Image and Data Applications

11:30 O’Flaherty MS-9 Günhan Caglayan p120
Pedagogy of linear combination and the levels of thinking about linear combination

12:00 O’Flaherty MS-9 Damjan Kobal p121
Matrix zeros of polynomials

10:30 D’Arcy Thompson MS-15 Froilán Dopico p174
Linearizations of matrix polynomials via Rosenbrock polynomial system matrices

11:00 D’Arcy Thompson MS-15 Louis Deaett p175
Non-sparse companion matrices

11:30 D’Arcy Thompson MS-15 Roberto Canogar p176
Non-sparse Companion Hessenberg Matrices

12:00 D’Arcy Thompson MS-15 Fernando De Terán p177
Companion pencils for scalar (and matrix) polynomials in the monomial basis

10:30 AC214 MS-16 Emanuele Munarini p185
Set coverings

11:00 AC214 MS-16 Lou Shapiro p186
Pseudo-involutions and palindromes in the Riordan group

11:30 AC214 MS-16 Ana Luzón p187
Commutators in the Riordan group

12:00 AC214 MS-16 Nikolaos Pantelidis p188
Quasi-involutions of the Riordan group

10:30 AC202 MS-17 Dean Crnković p197
q-ary strongly regular graphs

11:00 AC202 MS-17 Robert Craigen p198
Negacyclic weighing matrices

11:30 AC202 MS-17 Cian O’Brien p293
Weighted Projections of Alternating Sign Matrices and Latin-like Squares

12:00 AC202 MS-17 Andrea Švob p199
On some constructions of divisible design Cayley graphs and digraphs

12:30 O’Flaherty Theatre Plenary Sessions Vilmar Trevisan p30
Eigenvalue Location of Symmetric Matrices



20

Plenary Sessions

Paul Van Dooren: Israel Gohberg ILAS-IWOTA Lecture
Strongly minimal self-conjugate linearizations for polynomial and rational matrices
20 June 10:00 O’Flaherty Theatre Chair: André Ran p21

Pauline van den Driessche: Hans Schneider Prize Lecture
Linear Algebra is Everywhere: a Duo of Examples from Mathematical Biology
20 June 17:00 O’Flaherty Theatre Chair: Daniel Szyld p22

Nicolas Gillis
Historical tour on the nonnegative rank
21 June 09:00 O’Flaherty Theatre Chair: Jane Breen p23

Patrick E. Farrell
Reynolds-robust preconditioners for the stationary incompressible Navier–Stokes and MHD equations
21 June 16:30 O’Flaherty Theatre Chair: John Pearson p24

Clément de Seguins Pazzis
Decomposing matrices into quadratic ones

22 June 09:00 O’Flaherty Theatre Chair: Helena S̆migoc p25

Christiane Tretter: LAA Lecture
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Israel Gohberg ILAS-IWOTA Lecture

Strongly minimal self-conjugate linearizations for polynomial and rational
matrices

Paul Van Dooren

Université catholique de Louvain

We prove that we can always construct strongly minimal linearizations of an arbitrary rational matrix
from its Laurent expansion around the point at infinity, which happens to be the case for polynomial
matrices expressed in the monomial basis. If the rational matrix has a particular self-conjugate structure
we show how to construct strongly minimal linearizations that preserve it. The structures that are
considered are the Hermitian and skew-Hermitian rational matrices with respect to the real line, and the
para-Hermitian and para-skew-Hermitian matrices with respect to the imaginary axis. We pay special
attention to the construction of strongly minimal linearizations for the particular case of structured
polynomial matrices. The proposed constructions lead to efficient numerical algorithms for constructing
strongly minimal linearizations. The fact that they are valid for any rational matrix is an improvement
on any other previous approach for constructing other classes of structure preserving linearizations, which
are not valid for any structured rational or polynomial matrix. The use of the recent concept of strongly
minimal linearization is the key for getting such generality.

Strongly minimal linearizations are Rosenbrock’s polynomial system matrices of the given rational
matrix, but with a quadruple of linear polynomial matrices (i.e. pencils) :

L(λ) :=

[
A(λ) −B(λ)
C(λ) D(λ)

]
,

where A(λ) is regular, and the pencils
[
A(λ) −B(λ)

]
and

[
A(λ)
C(λ)

]
have no finite or infinite eigenval-

ues. Strongly minimal linearizations contain the complete information about the zeros, poles and minimal
indices of the rational matrix and allow to recover very easily its eigenvectors and minimal bases. Thus,
they can be combined with algorithms for the generalized eigenvalue problem for computing the complete
spectral information of the rational matrix.

Our results are inspired by the work of Israel Gohberg and his coauthors.

This is joint work with Froilán M. Dopico and Maŕıa C. Quintana
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Hans Schneider Prize Lecture

Linear Algebra is Everywhere: a Duo of Examples from Mathematical Biology

Pauline van den Driessche

University of Victoria, B.C. Canada

Linear algebra is increasingly important in applications to many areas. To illustrate this statement,
two problems in mathematical biology are considered. The first concerns target reproduction numbers as
threshold parameters. These are defined, their properties investigated, and then applied to the projection
matrix of an invasive weed having three life stages, with the aim of controlling the weed. The second
concerns the spread of an infectious disease, such as cholera, in a heterogeneous environment modeled as
a community network. The impact of varying the network on the basic reproduction number is quantified
by using a group inverse, and control strategy investigated.
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Historical tour on the nonnegative rank

Nicolas Gillis

University of Mons

The nonnegative rank of a nonnegative matrix is the minimum number of nonnegative rank-one
matrices whose sum is equal to that nonnegative matrix. The notion of nonnegative rank appeared in
the 70’s in the linear algebra community [1]; see [2] for an early survey. Although the nonnegative rank
seems at first sight to be a natural extension of the usual rank of a matrix, it leads to many intriguing
questions and its properties are rather different than that of the rank. For example, the nonnegative
rank is NP-hard to compute in general (Vavasis, 2010), and there exists a class of n-by-n nonnegative
matrices whose usual rank is equal to 3 but whose nonnegative rank is at least

√
2n (Fiorini, Rothvoss

and Tiwary, 2012).

The main goal of this talk is twofold. First, we will highlight some key properties and results on
the nonnegative rank with an historical flavour. This includes its geometric interpretation, the gap
between the rank and the nonnegative rank, computational complexity results, and the uniqueness of
nonnegative rank factorizations. Second, we will review applications where the nonnegative rank arises,
including analytical chemistry (Wallace, 1960), geoscience and remote sensing (Imbrie and Van Andel,
1963), computational geometry (Silio 1979, Aggarwal et al. 1989), probability (Suppes and Zanotti, 1981),
extended formulations in combinatorial optimization (Yannakakis, 1991), and unsupervised data analysis
where nonnegative matrix factorization (NMF, that looks for low-rank approximations with nonnegativity
constraint on the factors) has been particularly impactful (Lee and Seung, 1999).

This talk is partly based on the book [3]; in particular Chapter 1.4 (Introduction - History) and
Chapter 3 (Nonnegative Rank).
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Reynolds-robust preconditioners for the stationary incompressible
Navier–Stokes and MHD equations

Patrick E. Farrell

University of Oxford

When approximating PDEs with the finite element method, large sparse linear systems must be
solved. The ideal preconditioner yields convergence that is algorithmically optimal and parameter robust,
i.e. the number of Krylov iterations required to solve the linear system to a given accuracy does not grow
substantially as the mesh or problem parameters are changed.

Achieving this for the stationary Navier–Stokes equations has proven challenging: LU factorisation is
Reynolds-robust but scales poorly with degree of freedom count, while Schur complement approximations
such as PCD and LSC degrade as the Reynolds number is increased.

Building on the work of Schöberl, Olshanskii, and Benzi, in this talk we present the first preconditioner
for the Newton linearisation of the stationary incompressible Navier–Stokes equations in three dimensions
that achieves both optimal complexity and Reynolds-robustness. The exact details of the preconditioner
varies with discretisation, but the main idea is to combine augmented Lagrangian stabilisation, a custom
multigrid prolongation operator involving local solves on coarse cells, and an additive patchwise relaxation
on each level that captures the kernel of the divergence operator.

We present 3D simulations with over one billion degrees of freedom with robust performance from
Reynolds number 10 to 5000. We also present recent extensions to apply these ideas to build parameter-
robust solvers for the stationary incompressible resistive equations of magnetohydrodynamics.

This is joint work with Fabian Laakmann (Oxford) and Lawrence Mitchell (NVIDIA). Supported by
the EPSRC Centre for Doctoral Training in Partial Differential Equations [grant EP/L015811/1], and
by EPSRC grants EP/R029423/1 and EP/W026163/1.
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Decomposing matrices into quadratic ones

Clément de Seguins Pazzis

Université de Versailles Saint-Quentin-en-Yvelines

Let F be an arbitrary field. An element x of an F-algebra is called quadratic when it is annihilated
by a polynomial of degree 2 with entries in F. Such elements include the involutions (x2 = 1), the
idempotents (x2 = x), the square-zero elements (x2 = 0), quarter turns (x2 = −1) and so on.

Starting from the 1960’s, decomposing matrices into quadratic ones has attracted the attention of
many researchers, for decomposition into sums as well as decompositions into products. Most notably:

• products of idempotents have been studied by Erdos [3] and Ballantine [1];

• products of two involutions have been characterized by Wonenburger [8], Djoković [2], Hoffmann
and Paige [5]; Gustafson et al [4] have proved that every matrix with determinant ±1 is the product
of at most 4 involutions, and no less in general;

• sums of idempotents have been characterized by Wu [10].

This talk will focus on recent breakthroughs in such problems. One of the main ones deals with the
so-called “mixed length 2 problem”, for which a complete solution has recently been found [6]. In the
mixed length 2 problem for sums (respectively, for products), one considers arbitrary fixed polynomials
p and q with degree 2 over F, and one asks which square matrices split into A + B (respectively, AB)
for matrices A and B such that p(A) = 0 and q(B) = 0. Many results on the mixed length 2 problem
were obtained by J.-H. Wang in the early 1990’s, but he stuck to considering matrices over the complex
numbers [9], which hides most of the difficulties that arise in the general case.

We will also point to similar decomposition problems in different contexts: stable decompositions
(see e.g. [7]), decompositions of endomorphisms of infinite-dimensional vector spaces, decompositions
into sums of selfadjoint or skew-selfadjoint endomorphisms, decompositions in orthogonal or symplectic
groups.
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LAA Lecture

From finite to infinite dimensions: Chances and challenges in spectral theory

Christiane Tretter

University of Bern, Switzerland

This lecture focuses on chances and challenges in obtaining reliable information on eigenvalues and,
more generally, spectra of linear operators. Two aspects will be addressed. First, finite dimensional tools
to enclose spectra of infinite dimensional problems will be presented. Spectral bounds in terms of these
so-called block numerical ranges [1] improve classical numerical range bounds, both in infinite and finite
dimensions. Secondly, infinite dimensional tools to capture spurious eigenvalues of finite dimensional
spectral approximations will be showcased. These so-called essential numerical ranges [2], [3], originally
designed to enclose essential spectra, turn out to be powerful tools to assess the reliability of finite di-
mensional spectral approximations for unbounded linear operators. Examples and applications illustrate
the abstract results.
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SIAG/LA Lecture

Bridging the divide: from matrix to tensor algebra for optimal approximation
and compression

Misha Kilmer

Tufts University

Tensors, also known as multiway arrays, have become ubiquitous as representations for operators or
as convenient schemes for storing data. Yet, when it comes to compressing these objects or analyzing
the data stored in them, the tendency is to “flatten” or “matricize” the data and employ traditional
linear algebraic tools, ignoring higher dimensional correlations/structure that could have been exploited.
Impediments to the development of equivalent tensor-based approaches stem from the fact that familiar
concepts, such as rank and orthogonal decomposition, have no straightforward analogues and/or lead to
intractable computational problems for tensors of order three and higher. In this talk, we will review some
of the common tensor decompositions and discuss their theoretical and practical limitations. We then
discuss a family of tensor algebras based on a new definition of tensor-tensor products. Unlike other tensor
approaches, the framework we derive based around this tensor-tensor product allows us to generalize in a
very elegant way all classical algorithms from linear algebra. Furthermore, under our framework, tensors
can be decomposed in a natural (e.g. ‘matrix-mimetic’) way with provable approximation properties and
with provable benefits over traditional matrix approximation. In addition to several examples from recent
literature illustrating the advantages of our tensor-tensor product framework in practice, we highlight
interesting open questions and directions for future research.
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Graphs, copositive matrices, and sums of squares of polynomials

Monique Laurent

CWI, Amsterdam, and Tilburg University

This lecture revolves around a central open question, relevant to the computation of the stability
number α(G) of a graph G = ([n], E) in discrete optimization, to the cone COPn of copositive matrices,
and to the cone Σ of sums of squares of polynomials. Consider the matrix MG = α(G)(I + AG) − J ,
where AG is the adjacency matrix of G and J is the all-ones matrix, and the associated polynomial
pG = (x◦2)TMGx

◦2 in the squared variables x◦2 = (x21, . . . , x
2
n). As is well-known the matrix MG is

copositive and thus the polynomial pG is globally nonnegative on Rn. The question is whether there
exists a positivity certificate in the form (

∑n
i=1 x

2
i )
rpG ∈ Σ for some integer r ∈ N. De Klerk and

Pasechnik (2002) conjecture that the answer is positive, in fact already for r = α(G)− 1.

Following Parrilo (2000) let K(r)
n consist of all symmetric matrices M for which the associated poly-

nomial (
∑n

i=1 x
2
i )
r(x◦2)TMx◦2 is a sum of squares. These cones form an inner approximation hierarchy

of COPn and they are known to cover its full interior:

int(COPn) ⊆
⋃
r≥0
K(r)
n ⊆ COPn.

The above open question thus asks whether any graph matrix MG belongs to some cone K(r)
n , a nontrivial

question since any MG lies on the boundary of COPn. As one of our new results we show that the answer
is positive for the class of graphs that do not have any α-critical edge, which corresponds to the case
when pG has finitely many zeros on the unit sphere.

It is known that any 4×4 copositive matrix belongs to K(0)
4 , the dual of the cone of doubly-nonnegative

matrices. We show that the union of the cones K(r)
n does not cover COPn if n ≥ 6. However it remains

open what is the situation for n = 5. What we can show is that the Horn matrix MC5 plays a crucial
role: it remains only to settle whether any positive diagonal scaling of the Horn matrix belongs to some

cone K(r)
5 .

We will discuss old and new results around the above questions and related ones, which display a nice
interplay between graph structure, optimization, copositive matrices, and real algebraic geometry.

This is based on joint works [1, 2, 3] with Luis Felipe Vargas (CWI, Amsterdam).
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LAMA Lecture

Rank of a tensor and quantum entanglement

Shmuel Friedland

University of Illinois at Chicago

A tensor is a multiarray with d ≥ 3 indices, which is a vector in the tensor product of d-vector spaces.
The rank of a tensor is a minimal number of summands in a decomposition to a sum of rank-one tensors.
In this talk we discuss the notions of the generic rank, maximal rank, border rank, symmetric rank
and nuclear rank of tensors. We review some known results, open problems, and numerical methods to
compute different ranks.

The rank of a tensor is a simple measure of quantum entanglement. A pure quantum state v of a
composite system consisting of d subsystems with n levels each. It is viewed as a vector in the d-fold tensor
product of n-dimensional Hilbert space, and can be identified with a tensor with d indices, each running
from 1 to n. A quantum state v is called entangled if its not a rank-one tensor: v 6= v1 ⊗ v2 ⊗ · · · ⊗ vd,
which implies correlations between physical subsystems. A relation between various ranks and norms of
a tensor and the entanglement of the corresponding quantum state is revealed.

This is joint work with Wojciech Bruzda and Karol Życzkowski (Jagiellonian University, Krakow).
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Eigenvalue Location of Symmetric Matrices

Vilmar Trevisan

UFRGS-Universidae Federal do Rio Grande do Sul

We address the problem of estimating graph eigenvalues in terms of eigenvalue location, by which we
mean determining the number of eigenvalues of a symmetric matrix that lie in any given real interval.

Our algorithms are based on diagonalizing matrices and rely on Sylvester’s Law of Inertia. They are
either designed for graphs in a particular class, and exploit some special feature of this class, or they rely
on a structural decomposition of the input graph.

We show how a simple linear-time tree algorithm can be extended to symmetric matrices whose
underlying graph has a tree decomposition of small width. We also describe how a linear-time cograph
algorithm can be extended to matrices whose underlying graph has small clique-width.

These algorithms have applications that go beyond estimating eigenvalues of a particular graph, and
allow us to obtain properties of an entire class. We illustrate this with applications to the solution of
relevant problems in Spectral Graph Theory.
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Theme: Spectral graph Theory (SGT) is nowadays a strong research mathematical field relating
Linear Algebra with Graph Theory. Many combinatorial properties of graphs can be deduced from
the study of the eigenvalues and eigenvectors of matrices that represent them and the converse
is also true. On the other hand, its application to problems in Chemistry, Computer Science,
Operational Research and Combinatorial Optimization has been intensive with valuable results.
Although the SGT beginnings were in Chemistry applications (interpreting the molecular graph
eigenvalues), more recently, several new areas, such as quantum physics and communication net-
works, model their problems by SGT parameters.
This minisymposium will bring together a group of researchers that will present their recent con-
tributions to the area, allowing to establish the general framework of problems addressed in SGT
as well as new directions and open problems.
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PageRank: a different point of view

Margarida Mitjana

Universitat Politècnica de Catalunya

To compute PageRank in the classical model, it is supposed that for some fixed probability d, a
surfer jumps to a random node with probability d (damping factor) and goes to an adjacent node with
probability (1 − d). In the personalized PageRank, a vector v (teleportation or personalized vector) is
also considered. Then, the personalized PageRank is the unique probability eigenvector of the Google
matrix associated with the eigenvalue 1. The Google matrix, see [1], is

G = (1− d)P + d e v,

where P is the transition probability matrix and e is the all one vector. Some methods to compute
the PageRank consider the M -matrix I− G, which is singular and weakly diagonally dominant. Other
models consider also a constant probability of remaining in the node, the so-called lazy parameter that

correspond to consider
I + P

2
instead of P , then IG is a diagonally dominant M -matrix and hence it is

nonsingular.

The fundamental centrality measure PageRank implicitly uses Schrödinger operators for its formu-
lation, which corresponds to use diagonally dominant M -matrices. This is due to the presence of the
damping parameter for the formulation of the ranking process. Therefore, it is possible, to extend this
centrality measure to general Schrödinger operators; that is, to general M -matrices. We plan here to
tackle a more realistic model with a wider range of applications. Specifically, we consider in each step of
the random walk the importance of both the present state and the state we want to reach. Moreover, the
lazy term can be considered as a function instead of a parameter. This model appears when considering
a transition probability matrix associated with a symmetric M -matrix (singular or not singular); that is,
we can erase the diagonally dominant hypothesis.

This is joint work with Ángeles Carmona, Andrés M.Encinas and M. José Jiménez (Universitat
Politècnica de Catalunya). Partially supported by the Departament de Matemàtiques (UPC).
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Eigenvalues, spanning trees, and connected parity factors in regular graphs

Suil O

SUNY-Korea

In this talk, we prove a sharp upper bound for the second largest eigenvalue in an r-regular graph
G to guarantee that G contains at least two disjoint spanning trees. By utilizing the result, we prove
an upper bound for the second largest eigenvalue in an r-regular graph to guarantee the existence of a
connected parity factor.

This is joint work with Donggyu Kim (KAIST) and Zhiwen Wang (Nankai). Supported by the National
Research Foundation of Korea, Grant NRF-2020R1F1A1A01048226.
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Randić Energy and Index

Luiz Emilio Allem

Universidade Federal do Rio Grande do Sul

In this talk, we present ongoing work on a conjecture proposed by Gutman, Furtula and Bozkurt [1]
about the Randić energy (RE) of graphs. Specifically, they used computational experiments to conjecture
that the p-sun and the balanced (dn−24 e, b

n−2
4 c)-double sun are the graphs with largest Randić energy

among connected graphs. The p-sun, Sp, is a starlike tree of order n = 2p+ 1, p ≥ 0, having p-paths of
length 2 and the (p, q)-double sun, Dp,q, is a tree of order n = 2(p+ q + 1), where p, q ≥ 0, obtained by
connecting the centers of a p-sun and a q-sun with an edge.

We show that the family of bipartite graphs with bipartition A, B such that deg(b) ≤ 2 for every
b ∈ B, called TB - graphs, satisfies the conjecture for n odd, where n is the number of vertices. Next,
we extend the results to a more general class of graphs, which we call ATB - graphs. We conclude with
some computational experiments about the Randić index R−1 of trees.

This includes joint work with Adrián Pastine (UNSL), Gonzalo Molina (UNSL) and Rodrigo O. Braga
(UFRGS). Supported by FAPERGS, Grant 21/2551-0002053-9.
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Graphs Reconstructible from One Card and a One–Dimensional Eigenspace

James Borg

University of Malta

The deck D of a graph G is its multiset of one-vertex deleted subgraphs. We prove that a graph
G with a given generator of the eigenspace of any simple eigenvalue µ of the 0-1-adjacency matrix is
reconstructed uniquely from one µ–card of D, that is, a one-vertex deleted subgraph that does not have
µ as an eigenvalue. If the generator of the µ-eigenspace is known to be full, that is if it has no zero entries,
the graph is said to be a µ-nut graph. For a µ-nut graph, the reconstruction holds from any card. No
two non-isomorphic µ-nut graphs having a common µ–card, have the same associated one-dimensional
eigenspace. Moreover two non-isomorphic µ-nut graphs with the same simple eigenvalue and associated
eigenspace have no card in common.

This is joint work with Irene Sciriha
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Identifying the graphs whose (Laplacian) spectral radius is small

Francesco Belardo

University of Naples Federico II

A connected simple graph has a small (Laplacian) spectral radius if it does not exceed 3/
√

2 (resp.
(3/
√

2)2 = 4.5). The latter number comes as the limit value for the infinite subdivision of any graph
with maximum degree 3 [2]. The identification of (connected) graphs with small spectral radius has been
a quite investigated topic in Spectral Graph Theory. In [3] it is proved that for the adjacency spectral
radius such graphs have a natural quipu structure, that is, the vertices of maximum degree 3 lie either
on a path or on a cycle. Recently [1], we have attacked the analogous problem for the signless Laplacian
spectral radius. The latter research has relevant consequences for the adjacency and the Laplacian cases.
Here, we survey what we got so far.

This is joint work with M. Brunetti (Napoli) and Vilmar Trevisan (Porto Alegre).
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Almost Moore and largest mixed graphs of diameter two and three

Cristina Dalfo

Universitat de Lleida

Almost Moore mixed graphs appear in the context of the degree/diameter problem as a class of extremal
mixed graphs, in the sense that their order is one unit less than the Moore bound for such graphs. The
problem of their existence has been considered just for diameter 2. In this paper, we give a complete
characterization of these extremal mixed graphs for diameters 2 and 3. We also derive some optimal
constructions for other diameters.
This is joint work with M. A. Fiol (Universitat Politècnica de Catalunya), N. López (Universitat de
Lleida), J. M. Miret (Universitat de Lleida).
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[1] E. Baskoro, M. Miller, and J. Plesńık. On the structure of digraphs with order close to the Moore bound.
Graphs Combin. 14:109–119, 1998.

[2] D. Buset, M. El Amiri, G. Erskine, M. Miller, and H. Pérez-Rosés. A revised Moore bound for mixed graphs.
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[6] C. Dalfó, M. A. Fiol, and N. López. Sequence mixed graphs. Discrete Applied Math. 219:110–116, 2016.
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Assigned rational functions of a rooted tree

Ivan Damnjanović

Diffine LLC & Faculty of Electronic Engineering, University of Nǐs

We investigate the spectral properties of rooted trees with the intention of improving the currently
existing results that deal with this matter. The concept of an assigned rational function is recursively
defined for each vertex of a rooted tree. Afterwards, two mathematical formulas are given which show
how the characteristic polynomials of the adjacency and Laplacian matrix can be represented as products
of the aforementioned rational functions. In order to demonstrate their general use case scenario, the
obtained formulas are subsequently implemented on balanced trees, with a special focus on the Bethe
trees. In the end, some of the previously derived results are used in order to construct a tree merging
procedure which preserves the spectra of all of the starting trees.

Supported by Diffine LLC.
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Universal Realizability in Dimension 5 with Trace Zero: nonreal case

Miriam Pisonero

Universidad de Valladolid/IMUVA

The nonnegative inverse eigenvalue problem (NIEP) is the problem of finding necessary and sufficient
conditions for a list Λ = {λ1, . . . , λn} of complex numbers to be the spectrum of a nonnegative matrix.
We say that a realizable list Λ = {λ1, . . . , λn}, of complex numbers, is universally realizable if, for every
possible Jordan canonical form allowed by Λ, there is a nonnegative matrix with spectrum Λ. The
problem of finding necessary and sufficient conditions for a realizable list Λ, of complex numbers, to be
universally realizable will be called the universal realizability problem (URP). In terms of n, the NIEP is
completely solved only for n ≤ 4, and for n = 5 with trace zero. It is clear that for n ≤ 3 the concepts
of universally realizable and realizable are equivalent. The URP is also solved for n ≤ 4 and the solution
is different to the NIEP. In this talk we study the universal realizability of nonreal spectra of size 5 and
trace zero and describe a region for the universal realizability of nonreal 5-spectra with trace zero. We
use techniques from Graph Theory and from Linear Algebra.

This is a joint work with Ana I. Julio (UCN), C. Marijuán (UVa) and R. L. Soto (UCN). Supported
by GIR TAMCO from UVa.

Bibliography

[1] Ana I. Julio, C. Mariju´án, M. Pisonero and R. L. Soto. Universal Realizability in Low Dimension. Linear
Algebra and Appl. 619:107–1366, (2021).



Mon 20 June, 15:00, Anderson 41 MS-2

Universal Realizability in Dimension 5 with Trace Zero: real case

Carlos Marijuán

Universidad de Valladolid/IMUVA

The nonnegative inverse eigenvalue problem (NIEP) is the problem of finding necessary and sufficient
conditions for a list Λ = {λ1, . . . , λn} of complex numbers to be the spectrum of a nonnegative matrix.
We say that a realizable list Λ = {λ1, . . . , λn}, of complex numbers, is universally realizable if, for every
possible Jordan canonical form allowed by Λ, there is a nonnegative matrix with spectrum Λ. The
problem of finding necessary and sufficient conditions for a realizable list Λ, of complex numbers, to be
universally realizable will be called the universal realizability problem (URP). In terms of n, the NIEP is
completely solved only for n ≤ 4, and for n = 5 with trace zero. It is clear that for n ≤ 3 the concepts of
universally realizable and realizable are equivalent. The URP is also solved for n ≤ 4 and the solution is
different to the NIEP. In this talk we characterize the universal realizability of real spectra of size 5 and
trace zero. We use techniques from Graph Theory and from Linear Algebra.

This is a joint work with Ana I. Julio (UCN), M. Pisonero (UVa) and R. L. Soto (UCN). Supported
by grant PGC2018-096446-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way
of making Europe.
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Kronecker Products of Perron Similarities

Robert Perry, Jonathan Ta

University of Washington, Bothell

An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its
inverse are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study
of the nonnegative inverse eigenvalue problem. In this talk, Kronecker products of Perron similarities are
examined and used to construct ideal Perron similarities all of whose rows are extremal.

This is joint work with Pietro Paparella and Janelle Dockter.
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On polynomials preserving nonnegative matrices

Rapahel Loewy

Technion-Israel Institute of Technology

The Nonnegative Inverse Eigenvalue Problem (NIEP) asks when is a list Λ = (λ1, λ2, . . . , λn) of
complex numbers the spectrum of an n× n nonnegative matrix A. If it is, Λ is said to be realizable and
A is a realizing matrix for Λ. This is a well known problem, fully solved only for n ≤ 4. Making progress
on its solution requires to obtain necessary conditions for Λ to be realizable. Motivated by this, Loewy
and London defined the following set. Given a positive integer n, let

Pn = {p ∈ C[x] : p(A) ≥ 0, for all A ≥ 0, A ∈ Rn,n}.

Indeed, if Λ is realizable, so must be the list p(Λ) := (p(λ1), p(λ2), . . . , p(λn)), for any p ∈ Pn.

It is clear that, for a polynomial p to be in Pn, it is necessary that all its coefficients are real and
sufficient that all are nonnegative. Loewy and London noted that there are polynomials in Pn with some
negative coefficients. It is desirable to characterize Pn. This is known only for n = 1 and n = 2, where
the latter has been recently obtained by Clark and Paparella.

It is straightforward to see that for, any positive integer n, Pn+1 ⊆ Pn. Clark and Paparella showed
that P2 ⊂ P1 and P3 ⊂ P2, and raised the following conjecture:

For every positive integer n, Pn+1 ⊂ Pn.

In this talk we prove this conjecture.
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Bisymmetric Nonnegative Jacobi Matrix Realizations

A.M. Encinas

Universitat Politècnica de Catalunya (UPC)

The spectral theory of Jacobi matrices; i.e., real irreducible symmetric matrices J(a, b) with main diagonal
a = (a1, . . . , an) and second diagonal b = (b1, . . . , bn−1), b > 0, is nowadays a well-developed area of linear
algebra and functional analysis. The inverse eigenvalue problems for Jacobi matrices have also been
studied in great detail in different ways, see for instance [1, 4, 5, 6]. The case concerning to bisymmetric
Jacobi matrices has always deserve special attention because its dynamic interpretation as mass-spring
chains with symmetrically distributed beads, see [3],[5].

H. Hochstadt proved that given an ordered list Λ = {λ1, . . . , λn}, λ1 > · · · > λm, there exists at most
one bisymmetric Jacobi matrix J(a, b) realicing Λ, see [6, Theorem 3] and in [5, Theorem 3], O.H. Hald
announced without proof that such matrix exists (such a proof can be found in [1, Section 3] where the
raised problem is named as Problem C). We emphasize that in general such a matrix is not non-negative.
For this, it is necessary the list satisfies λk +λn+1−k ≥ 0, for any k = 1, . . . , n. Additional hypotheses, as
λk + λn+1−k > 0 or λk + λn+1−k = 0 for any k = 1, . . . , n, assures the realization by a nonnegative and
irreducible Jacobi matrix. However, neither of the above conditions guarantees that the realizing matrix
is bisymmetric in addition.

We focus here in studying the realizability of a given ordered list by a bisymmetric Jacobi matrix.
We first apply the structural properties of bisymmetric matrices, see [2] to Jacobi matrices to reduce the
raised problem to another one of half size. In this way we can characterize the spectra of nonnegative
irreducible bisymmetric Jacobi matrices of low size and also give the unique entries of the matrix in terms
of the eigenvalues.

This is joint work with M.J. Jiménez (UPC), C. Marijuán (Universidad de Va lladolid, UVa), M. Mit-
jana (UPC) and M. Pisonero (UVa). Partially supported by the Departament de Matemàtiques (UPC).
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A combinatorial characterization of lists realizable by compensation in the
SNIEP

Julio Moro

Universidad Carlos III de Madrid

The SNIEP (Symmetric Nonnegative Inverse Eigenvalue Problem) deals with characterizing the possi-
ble spectra of symmetric entrywise nonnegative matrices. Any list of real numbers which is the spectrum
of such a matrix is said to be realizable. Among all realizable lists a subclass has been identified as those
‘realizable by compensation’ (in short, C-realizable), which was shown in [1] to include most of subclasses
known so far associated with sufficient realizability conditions.

In this talk we present a combinatorial characterization of C-realizable lists, first for the special case
of zero-sum lists [2], and then for arbitrary ones with nonnegative sum. One of the consequences of this
characterization is that the set of zero-sum C-realizable lists is the union of polyhedral cones whose faces
are described by equations involving only linear combinations with coefficients 1 and −1 of the entries
in the list. Lists with positive sum are C-realizable if and only if there exists a shifted version with zero
sum satisfying the equations mentioned above.

This is joint work with Carlos Marijuán (Universidad de Valladolid (Spain)). Supported by the Spanish
Ministerio de Economı́a y Competitividad under grants PGC2018-096446-B-C21, MTM2017-84098-P and
MTM2017-90682-REDT.

Bibliography

[1] A. Borobia, J. Moro and R. Soto A unified view on compensation criteria in the real nonnegative inverse
eigenvalue problem, Linear Algebra Appl., vol. 428 (2008), pp. 2574–2584.

[2] C. Marijuán and J. Moro A characterization of trace-zero sets realizable by compensation in the SNIEP, Linear
Algebra Appl., vol. 615 (2021) pp. 42 – 76, DOI: 10.1016/j.laa.2020.12.021



46

MS-3: Copositive and completely
positive matrices and related topics

Organisers: Avi Berman (Technion, Haifa), Mirjam Dür (University of Augsburg)
and Naomi Shaked-Monderer (Max Stern Yezreel Valley College)

Theme: The concept of copositivity can be traced back to Theodore Motzkin in 1952, and that
of complete positivity to Marshal Hall Jr. in 1958. The two classes of matrices are related, and
both have received considerable attention in the linear algebra community over the years, and in
the last two decades also in the mathematical optimization community. They also arise naturally
in various applications. In this minisymposium we bring together people working on these classes
of matrices from all these angles: linear algebra, optimization, and other applications, such as
machine learning and quantum information.
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Completely positive factorizations associated with Euclidean distance matrices corresponding to an . . .
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20 June 12:30 D’Arcy Thompson Mirjam Dür p50
Factorization of Completely Positive Matrices
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Entangled symmetric quantum states and copositive matrices
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Copositivity and the Riccati Equation
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Completely positive factorizations associated with Euclidean distance
matrices corresponding to an arithmetic progression

Damjana Kokol Bukovšek

University of Ljubljana

Euclidean distance matrices corresponding to an arithmetic progression have rich spectral and struc-
tural properties. We exploit those properties to develop completely positive factorizations of translations
of those matrices. We show that the minimal translation that makes such a matrix positive semidefinite
results in a completely positive matrix. We also discuss completely positive factorizations of such matri-
ces over the integers. Methods developed can be used to find completely positive factorizations of other
matrices with similar properties.

This is joint work with Thomas Laffey (University College Dublin) and Helena Šmigoc (University
College Dublin).
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Symmetric Nonnegative Trifactorization Rank

Helena Šmigoc

University College Dublin

The Symmetric Nonnegative Matrix Trifactorization (SNT-factorization) is a factorization of an n×n
nonnegative symmetric matrix A of the form BCBT , where C is a k × k symmetric matrix, and both
B and C are required to be nonnegative. SNT-factorization is a special case of nonnegative matrix
factorization, as well as a generalization of the completely positive factorization. In this talk we define
and present some basic properties of the the SNT-rank of A, defined as the minimal k, for which a
factorization described above exists. We will compare the ST-rank with the completely positive rank.

This is joint work with Damjana Kokol Bukovšek (University of Ljubljana).
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The Maximal Angle between 5× 5 Positive Semidefinite and 5× 5 Non-negative
matrices

Qinghong Zhang

Northern Michigan University

Hiriart-Urruty and Seeger in 2010 conjectured that the maximal angle for two n×n copositive matrices
is 3π

4 for n ≥ 3. Goldberg and Shaked-Monderer in 2014 disproved the conjecture by constructing a
sequence of pairs of matrices. Each pair consists of a positive semidefinite matrix and a non-negative
matrix of the same order. The problem of calculating or estimating the maximal angle between an
n × n positive semidefinite matrix and an n × n non-negative matrix is interesting in its own right as
pointed out by Goldberg and Shaked-Monderer. While this problem is completely solved for n ≤ 4 by
Goldberg and Shaked-Monderer, in this study we formulate a signomial geometric programming problem
to find the maximal angle between 5×5 semidefinite and 5×5 non-negative matrices. Instead of using an
optimization problem solver to solve the problem numerically, we use the method of Lagrange Multipliers
to solve the signomial geometric program, and therefore, to find the maximal angle between the cone of
5× 5 semidefinite matrices and the cone of 5× 5 non-negative matrices.
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Factorization of Completely Positive Matrices

Mirjam Dür

Augsburg University

A matrix A is called completely positive, if there exists an entrywise nonnegative matrix B such that
A = BBT . These matrices play a major role in combinatorial and quadratic optimization. In this talk
we study the problem of finding a nonnegative factorization BBT of a given completly positive matrix
A. We formulate this factorization problem as a nonconvex feasibility problem and develop a solution
method based on alternating projections. A local convergence result can be shown for this algorithm. We
also provide a heuristic extension which improves the numerical performance of the algorithm. Extensive
numerical tests show that the factorization method is very fast in most of the test instances.

This is joint work with Patrick Groetzner.
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On the algebraic structure of the copositive cone

Roland Hildebrand

Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

A closed convex cone can be decomposed into a disjoint union of interiors of its faces. This well-known
facial decomposition yields a lot of information on the structure of the cone. However, in general there
are infinitely many faces, and for some purposes this decomposition is too fine. Some cones admit a
coarser, finite decomposition which unites faces which are of the same type. For example, the cone of
positive semi-definite matrices of size n decomposes into n + 1 relatively open manifolds, each of which
contains positive semi-definite matrices of constant rank and which are themselves unions of interiors of
similar faces.

We propose such a finite decomposition for the copositive cone COPn. The components of the decom-
position are parameterized by the extended minimal zero support set. This means that each component
SE is composed of copositive matrices A with the same extended minimal zero support set E . This set
is a collection of pairs E = (Iα, Jα)α=1,...,|E|, where α enumerates the minimal zeros uα of A, Iα is the
support of the minimal zero uα, and the index set Jα ⊃ Iα consists of those indices j ∈ {1, . . . , n} such
that (Auα)j = 0.

The set SE lies in a real-algebraic variety ZE which is given by a finite number of polynomial equalities,
namely those equivalent to the rank-deficiency of the sub-matrix AIα×Jα . Our main result states that
for every A ∈ COPn with extended minimal zero support set E , there exists a neighbourhood U of A in
the space of real symmetric matrices such that U ∩ZE ⊂ SE , i.e., SE is open in ZE . Thus the polynomial
equalities cited above fully determine the local structure of SE .
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Generating extreme copositive matrices near matrices obtained from
COP-irreducible graphs

Maxim Manainen

Moscow Institute of Physics and Technology

In this work we use a recently proposed method of copositive cone decomposition to generate extreme
and irreducible copositive matrices. We obtain local conditions for components containing matrices de-
rived from cop-irreducible graphs [7]. For one graph we describe the component completely. We exhibit
examples of singular points in the component for some of the graphs. These results and our software
can be used to generate extreme copositive matrices on the boundary of the copositive cone to test cone
approximations.
A symmetric matrix A is called copositive if ∀x ∈ Rn+ we have xTAx ≥ 0, where Rn+ is the set of all
n-dimensional nonnegative vectors. The cone COPn of copositive matrices is heavily used in non-convex
optimization [1] and in approximate solutions of combinatorial optimization problems [2].
In [6] R. Hildebrand has proposed a method of decomposing the copositive cone into a disjoint union
of relatively open subsets, each containing matrices with similar extended minimal zero support set. P.
Dickinson, R. de Zeeuw. in [7] have proposed a method of extreme and irreducible matrix generation
based on cop-irreducible graphs. We derive conditions describing the components containing these ma-
trices, thus expanding the scope of available special copositive matrices for testing approximations of the
copositive cone.
For cop-irreducible graphs with stability number 3 we get a components’ trigonometric parametrization
with linear conditions on the angles. For the C7 graph we derive global conditions which characterize
the component completely. For most of the graphs with ≤ 10 vertices we give a local description of the
component and for some graphs their component contains a singularity in the central point. The software
we provide can be used to get the dimension and a local description of components for any cop-irreducible
graph with stability number 3.

This is joint work with Roland Hildebrand (LJK/CNRS), Roman Tarasov and Mikhail Seliugin
(Moscow Institute of Physics and Technology)
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[3] P. H. Diananda On non-negative forms in real variables some or all of which are non-negative. Mathematical
Proceedings of the Cambridge Philosophical Society 58 (1), 17 - 25 , 1962.

[4] R Hildebrand. The extreme rays of the 5 × 5 copositive cone. Linear Algebra and its Applications 437 (7),
1538-1547, 2012.

[5] A. Afonin, R. Hildebrand, P. Dickinson. The extreme rays of the 6 × 6 copositive cone. Journal of Global
Optimization 79 (1), 153-190, 2021.

[6] R. Hildebrand. On the algebraic structure of the copositive cone. Optimization Letters, Springer Verlag, 14,
2007-2019, 2020.

[7] P. Dickinson, R. de Zeeuw. Generating irreducible copositive matrices using the stable set problem. Discrete
applied mathematics, 296, 103-117, 2021.



Tue 21 June, 15:00, D’Arcy Thompson 53 MS-3

Entangled symmetric quantum states and copositive matrices

Jordi Tura

Instituut-Lorentz, Leiden University

Entanglement is one of the most intriguing phenomena in quantum physics whose implications have
profound consequences, not only from a theoretical point of view but also in light of some computational
tasks that would be otherwise unfeasible with classical systems. For this reason, deciding whether a
quantum state is entangled or not, is a problem of paramount importance whose solution, unfortunately,
is known to be NP-hard in the general scenario. In some cases, however, symmetries provide a useful
framework to recast the separability problem in a simpler way, thus reducing the original complexity of
this task.

In this work we focus on symmetric quantum states, i.e., states that are invariant under permutations
of the parties, showing how, in the case of the qudits, the characterization of the entanglement can
be accomplished by means of copositive matrices [1]. In particular, we establish a connection between
entanglement witnesses, i.e., hermitian operators that are able to detect entanglement, and copositive
matrices, showing how only a subset of them, dubbed as exceptional, can be used to assess a non-trivial
form of entanglement, so-called PPT-entanglement, in any dimension, with the PPT-entangled edge
states detected by the so-called extremal matrices.

Finally we illustrate our findings discussing some examples of families of PPT-entangled states in
3-level and 4-level systems, along with the entanglement witnesses that detect them. We conjecture that
any PPT-entangled state of two qudits can be detected by means of an entanglement witness of the form
that we propose [2].

This is joint work with Albert Aloy (Vienna), Carlo Marconi, Rubén Quesada, Maciej Lewenstein
and Anna Sanpera (Barcelona).
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Copositivity and the Riccati Equation

Oliver Mason

Maynooth University

To date, much of the research related to copositivity in the systems and control literature has focussed
on questions of stability and various classes of copositive Lyapunov functions for positive systems. Along-
side the Lyapunov equation, the Riccati equation is one of the most widely studied matrix equations in
control theory, and plays a key role in the classical linear quadratic regulator (LQR) problem in optimal
control. For a general linear time-invariant (LTI) system, the objective function in the LQR problem
is defined by positive definite and positive semi-definite matrices. This leads to Riccati equations and
inequalities in which the positive semi-definite cone plays a central role. In considering the LQR problem
for a positive system, it is natural to consider objective functions given by copositive matrices instead.
This leads us to consider Riccati equations and inequalities where the role of the positive semi-definite
cone is taken by the copositive cone. In this talk, several classical results will be recalled concerning
ordering and extremal solutions of Riccati inequalities and equations with respect to the partial order
defined by the positive semi-definite cone. A number of problems concerning Riccati equations with
copositive coefficients will be discussed, and comparison theorems, results on extremal solutions, and
on the existence of copositive solutions will be described for this case. The relationship with the LQR
problem for positive systems will also be discussed.



Thu 23 June, 14:00, D’Arcy Thompson 55 MS-3

The {+,−, 0} sign patterns of inverse doubly nonnegative matrices and inverse
completely positive matrices

Naomi Shaked-Monderer

The Max Stern Yezreel Valley College

We identify all possible {+,−, 0} sign patterns of inverse doubly nonnegative (DNN) matrices, and
of all inverse completely positive (CP) matrices. We prove that all inverses of DNN realizations of a
connected graph share the same {+,−, 0} sign pattern if and only if the graph is bipartite, and the
same holds in CP case. In the DNN case, the characterization generalizes a result of [1] regarding the
{+,−} sign pattern of inverse DNN matrices, where + denotes a nonnegative entry, and the second result
answers a question left open there. We also consider the reverse question: which {+,−, 0} sign patterns
of inverse DNN/CP matrices determine uniquely the graph of their originating DNN/CP matrix. We
answer the question in the DNN case, but the CP case is still open.
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Thu 23 June, 14:30, D’Arcy Thompson 56 MS-3

Linear preservers of copositive and completely positive matrices

Sachindranath Jayaraman

IISER Thiruvananthapuram, India

A linear preserver is a linear map L on a space of matrices that preserves a subset K or a relation R.
There are two types of preserver problems. The first one, called strong/onto preservers, is to determine
the structure of a map L defined on a space of matrices such that L(K) = K. The other one is to
determine the structure of L such that L(K) ⊂ K. These are called into preservers. Linear preservers of
the closed convex cone of copositive matrices, COPn, and its dual, CPn, pose interesting questions. One
may refer to [2] for details. Strong linear preservers of these cones are completely characterized in [3, 4].
However, a complete answer to the into linear preservers of either of these cones remains unsolved. This
presentation concerns deriving the structure of an invertible linear map on S2 (the space of real symmetric
matrices) such that L(CP2) ⊂ CP2. The proof uses a characterization of nonnegativity relative to proper
cones from [1].

This is a joint work with Dr. Vatsalkumar Mer, Department of Mathematics, Chungbuk National
University, Korea.
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Mon 20 June, 11:00, Anderson 58 MS-4

Asymptotic survival of genuine multipartite entanglement in noisy quantum
networks depends on the topology

Julio de Vicente

Departamento de Matemáticas, Universidad Carlos III de Madrid

The study of entanglement in multipartite quantum states plays a major role in quantum information
theory and genuine multipartite entanglement signals one of its strongest forms for applications; however,
its characterization for general (mixed) states is a highly nontrivial problem. Motivated by the formidable
experimental challenge of controlling quantum states with many constituents, we introduce a particularly
simple subclass of multipartite states, which we term pair-entangled network (PEN) states, as those
that can be created by distributing exclusively bipartite entanglement in a connected network, and
we study how their entanglement properties are affected by noise and the geometry of the graph that
provides the connection pattern. We show that genuine multipartite entanglement in a PEN state depends
both on the level of noise and the network topology and, in sharp contrast to the case of pure states,
it is not guaranteed by the mere distribution of mixed bipartite entangled states. Our main result,
however, is a much more drastic feature of this phenomenon: the amount of connectivity in the network
determines whether genuine multipartite entanglement is robust to noise for any system size or whether it
is completely washed out under the slightest form of noise for a sufficiently large number of parties. This
latter case implies fundamental limitations for the application of certain networks in realistic scenarios,
where the presence of some form of noise is unavoidable.

This is joint work with Patricia Contreras-Tejada (ICMAT Madrid) and Carlos Palazuelos (Univer-
sidad Complutense de Madrid). Financial support by the Spanish Agencia Estatal de Investigación, Min-
isterio de Ciencia e Innovación (Grant No. PID2020-113523GB-I00) and by the Comunidad de Madrid
(Grant No. QUITEMAD-CMS2018/TCS-4342 and EPUC3M23).



Mon 20 June, 11:30, Anderson 59 MS-4

Entanglement annihilation between cones

Alexander Müller-Hermes

University of Oslo

Every multipartite entangled quantum state becomes fully separable after an entanglement breaking
quantum channel acted locally on each of its subsystems. Whether there are other quantum channels
with this property is an open problem with important implications for quantum information theory. I will
explain how to cast this problem in the general setting of convex cones in finite-dimensional vector spaces.
The entanglement annihilating maps transform the k-fold maximal tensor product of a cone C into the
k-fold minimal tensor product of a cone C ′, and the pair (C,C ′) is called resilient if all entanglement
annihilating maps are entanglement breaking. Using a connection to Banach space tensor norms and
solutions to the Hurwitz matrix equations, I will show that the pair (C,C ′) is resilient when either C or
C ′ is a Lorentz cone. Finally, I will mention some open problems.

This is joint work with Guillaume Aubrun (Lyon). This work was supported in part by ANR (France)
under the grant ESQuisses (ANR-20-CE47-0014-01) and by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie Action TIPTOP (grant no. 843414.
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Mon 20 June, 12:00, Anderson 60 MS-4

Mutually unbiased bases: polynomial optimization and symmetry

Sander Gribling

Université Paris Cité

A set of k orthonormal bases of Cd is called mutually unbiased if |〈e, f〉|2 = 1/d whenever e and f are
basis vectors in distinct bases. A natural question is for which pairs (d, k) there exist k mutually unbiased
bases in dimension d. The (well-known) upper bound k ≤ d+ 1 is attained when d is a power of a prime.
For all other dimensions it is an open problem whether the bound can be attained. Navascués, Pironio,
and Aćın showed how to reformulate the existence question in terms of the existence of a certain C∗-
algebra. This naturally leads to a noncommutative polynomial optimization problem and an associated
hierarchy of semidefinite programs. The problem has a symmetry coming from the wreath product of Sd
and Sk.

We exploit this symmetry (analytically) to reduce the size of the semidefinite programs making them
(numerically) tractable. A key step is a novel explicit decomposition of the Sd o Sk-module C([d]×[k])t

into irreducible modules. We present numerical results for small d, k and low levels of the hierarchy.
In particular, we obtain sum-of-squares proofs for the (well-known) fact that there do not exist d + 2
mutually unbiased bases in dimensions d = 2, 3, 4, 5, 6, 7, 8.

This is joint work with Sven Polak (CWI Amsterdam).



Mon 20 June, 12:30, Anderson 61 MS-4

An Extension of Bravyi-Smolin’s Construction for UMEBs

Mizanur Rahaman

Ecole Normale Supérieure de Lyon

Motivated by the concept of Unextendible Product Bases (UPBs), S. Bravyi and J. Smolin introduced
the concept of Unextendible Maximally Entangled Bases (UMEBs). This is a collection of orthogonal
maximally entangled states in a bipartite system Cd⊗Cd such that there is no maximally entangled state in
the orthogonal complement of this set. UMEBs exhibit many interesting features related to entanglement,
quantum measurements, Mutually Unbiased Bases etc. In their paper where they introduced UMEBs,
Bravyi-Smolin put forward a construction to produce UMEBs in C3 ⊗ C3 from a set of equiangular
lines in C3. In this work we extend this construction and show that equiangular subspaces also exhibit
examples of UMEBs. These type of projections arise in the context of optimal subspace packing in
Grassmannian spaces. This generalization yields new examples of UMEBs in infinitely many dimensions
of the underlying system. Consequently, we find orthogonal unitary bases for symmetric subspaces of
complex matrices in odd dimensions. This finding validates a recent conjecture about the mixed-unitary
rank of the symmetric Werner–Holevo channel in infinitely many dimensions.

This is a joint work with Jeremy Levick (IQC, Waterloo and Univ. of Guelph)



Tue 21 June, 10:30, Anderson 62 MS-4

Some results and problems in Quantum Tomography

Chi-Kwong Li

College of William & Mary

Recent results and questions in quantum state and quantum process tomography will be presented.
Some mathematical problems related to the implementations of the schemes using different computing
platforms such as IBMQ, NMR, optics, will be discussed.



Tue 21 June, 11:00, Anderson 63 MS-4

Central limit theorems for braided coin tosses

Claus Koestler

UCC - National University of Ireland

We consider certain representations of the infinite braid group on the infinite tensor product of complex
2×2-matrices, to set up braided sequences of quantum coin tosses. We show that such sequences provide
central limit laws in quantum probability which interpolate between the normal distribution and the
symmetric Bernoulli distribution. We establish explicit moment formulas for these laws through the
combinatorics of directed ordered pair partitions.

This is joint work with Ayman Alahmade (Taibah University).
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[2] Ayman Alahmade, and Claus Köstler. Central limit theorems for braided coin tossing. In Preparation (2022).



Tue 21 June, 11:30, Anderson 64 MS-4

Evaluating Quantum Instruments

Darian Mclaren

Institute for Quantum Computing, and Department of Applied Mathematics, University of Waterloo, Waterloo,

Ontario N2L 3G1, Canada

Whenever physically implementing a quantum measurement, it is always necessary to accurately
evaluate it in comparison to its ideal implementation. A useful way of representing measurements is by
quantum instruments: completely positive trace preserving maps that send a quantum state (density
matrix) to a mixed state consisting of possible measurement outcomes and their post-measurement state.
And so the question becomes: what is an appropriate figure of merit to compare quantum instruments?
In this talk we will be reviewing the framework of quantum instruments and exploring two figures of
merit, the process fidelity and diamond distance, that can be used to evaluate them.

This is joint work with Joel J. Wallman (University of Waterloo, and Keysight Technologies)



Wed 22 June, 10:30, Anderson 65 MS-4

Universal operator systems generated by projections

Travis B. Russell

Department of Mathematics, Dartmouth College

We describe explicit constructions for finite-dimensional operator systems generated by projections
satisfying certain linear relations. In particular, we describe operator systems spanned by products of
commuting projection-valued measures. At the first matrix level, the ordered vector space constructed
satisfies the property that its state space is affinely homeomorphic to the set of quantum-commuting
correlations. We discuss corresponding constructions for local, quantum, and quantum-approximate cor-
relations, and implications for the recently discovered separation of the correlation sets and the resolution
of Connes’ embedding problem.

This is joint work with Roy Araiza (University of Illinois Urbana-Champaign) and Mark Tomforde
(University of Colorado Colorado Springs).



Wed 22 June, 11:00, Anderson 66 MS-4

Quantum Advantage in Information Retrieval

Mark Howard

NUI Galway

Quantum systems offer advantages over classical ones for various types of information processing. Here
[1] we show a quantum-over-classical advantage for a task we call information retrieval. We demonstrate
this with a battleshiplike game we call the Torpedo Game. Alice and Bob, finding themselves on opposing
sides in a naval conflict wish to subvert their orders while not directly disobeying them, with the goal
of avoiding casualties. To do this Alice is allowed very limited communication with Bob, who must
retrieve enough information from the message about Alice’s whereabouts to avoid sinking her ship. With
quantum communication perfect strategies are possible, something that is not achievable with classical
communication only.

Quantum systems can outperform classical ones in a variety of information-processing tasks. However,
the precise features of quantum systems that enable information processing advantages are not fully
understood. For information retrieval tasks we pinpoint a feature known as contextuality, which relates
to classical logical paradoxes as being at the root of quantum advantage, and moreover show that the
degree of contextuality present quantifies the degree of advantage that can be obtained.

Our insight into the source of quantum advantage in information retrieval, and the broad approach
we develop in this work for treating information retrieval in quantum settings, have led us to propose
the Torpedo Game, but can also lend themselves to discovering further protocols exhibiting quantum
advantage. The example of the Torpedo Game also relies on an experimentally accessible three-level
system, that make this work amenable to implementation with current technology.

This is joint work with Pierre-Emmanuel Emeriau and Shane Mansfield (Quandela SAS, Paris).
M.H. is supported by a Royal Society-Science Foundation Ireland University Research Fellowship.
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Wed 22 June, 11:30, Anderson 67 MS-4

Matrices of interest in higher dimensional quantum walks

Michael Mc Gettrick

National University of Ireland Galway

In discrete quantum walks, we are interested in quantum “coin” operations defined by choosing a
matrix from SU(n). The canonical example in the simplest classical case (one dimensional walk) is
defined using a coin with two faces, which can be in “heads” or “tails” state, and with only two possible
operations (Identity operation or NOT operation). For the corresponding quantum case, we have three
continuous parameters to choose to fix our SU(2) matrix. If we want to execute a quantum walk on a
high dimensional lattice, or high degree graph, analysis becomes difficult because of physics problems
(controlling high dimensional quantum states) and mathematics problems (the parameter choice grows
quadratically with n).

In this talk we will describe some specific matrices that arise in high dimensional quantum walks.
Amongst our examples are two families:

• Quantum walks on the integer lattice Zn. The direct way of defining such walks is to choose an
element of SU(2n). Using an alternating walk, we can create a subset of quantum walks on Zn by
just choosing an SU(2) matrix (reducing the parameter choice from 15 to 3, for example, in the
case of the square lattice).

• Quantum walks with memory (“history”). These are analogous to higher order Markov chains. To
define such a walk with m memory steps on a graph G of degree d means choosing a matrix in
SU(dm). We show this can be re-defined as a quantum walk without memory on the line graph
Lm(G).



Fri 24 June, 10:30, Anderson 68 MS-4

Quantum Information: the Mathematics behind the quantification of quantum
entanglement and the distinction of quantum states

Victoria Sánchez Muñoz

National University of Ireland Galway

In the last few decades there has been an increasing interest in Quantum Information, in part due
to the experimental improvement of quantum technology. The field of Quantum Information concerns
with studying and implementing the transmission of information using quantum mechanical resources,
and thus, it makes use of the mathematical framework of Quantum Mechanics and information theory.
See [1] for a general outlook of certain important features (and challenges) that Quantum Information
possesses due to its quantum mechanical nature.

In the first part of my talk, I will introduce some of the mathematical tools and concepts used in
Quantum Information and their physical meaning. Specifically, I will speak about how one of the most
important concepts of Quantum Mechanics -entanglement- is quantified; and also the problem of
distinguishing two quantum states, which is crucial for characterising how well a quantum channel
preserves information and for quantum error correction (see [2]). In the second part of my talk, I will
give an overview of an ongoing work that uses both concepts -the measurement of entanglement and the
distance between quantum states- in the context of Quantum Games.

This is an ongoing joint work with Michael Mc Gettrick (NUI Galway). Supported by the College of
Science and Engineering at the National University of Ireland Galway.
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Fri 24 June, 11:00, Anderson 69 MS-4

Isoperimetric inequalities for quantum graphs

J. Alejandro Chávez-Doḿınguez

University of Oklahoma

For classical graphs, Cheeger’s inequality shows the equivalence between the spectral gap of the
Laplacian and the notion of expansion, where the former measures the distance between eigenvalues of a
matrix, and the latter quantifies isoperimetric inequalities in the graph.

In the quantum setting, quantum expanders were defined using the spectral gap approach and they
have received a significant amount of attention. Previous work of Temme, Kastoryano, Ruskai, Wolf, and
Verstraete has already related quantum expanders to an inequality of an isoperimetric flavor, which can
be understood as a quantum version of an edge-isoperimetric inequality. In this work, we prove a version
of a vertex-isoperimetric inequality for quantum expanders. Our approach is based on the definition of
quantum metric spaces of Kuperberg and Weaver. As an application, we prove a quantum version of a
classical theorem stating that a metric space that equi-coarsely contains a sequence of expanders must
have infinite asymptotic dimension.

This is joint work with Andrew Swift. Supported by NSF grant DMS-1900985.
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Mon 20 June, 11:00, AC201 71 MS-5

Two conjectures on the spread of graphs

Michael Tait

Villanova University

Given a graph G let λ1 and λn be the maximum and minimum eigenvalues of its adjacency matrix and
define the spread of G to be λ1−λn. In this talk we discuss solutions to a pair of 20-year-old conjectures
of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs.

The first, referred to as the spread conjecture, states that over all graphs on n vertices the join of a
clique of order b2n/3c and an independent set of order dn/3e is the unique graph with maximum spread.
The second, referred to as the bipartite spread conjecture, says that for any fixed e ≤ n2/4, if G has
maximum spread over all n-vertex graphs with e edges, then G must be bipartite.

We show that the spread conjecture is true for all sufficiently large n, and we prove an asymptotic
version of the bipartite spread conjecture. Furthermore, we exhibit an infinite family of counterexamples
to the bipartite spread conjecture which shows that our asymptotic solution is tight up to a multiplicative
factor in the error term.

This is joint work with Jane Breen, Alex Riasanovsky, and John Urschel.



Mon 20 June, 11:30, AC201 72 MS-5

Algebraic Connectivity and the Laplacian Spread

Mark Kempton

Brigham Young University

The Laplacian Spread Conjecture states that if a graph on n vertices has Laplacian eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λn then

λn − λ2 ≤ n− 1.

By a well-known relationship between the Laplacian eigenvalues of a graph and its complement, the
Spread Conjecture can be seen to be equivalent to the statement

λ2(G) + λ2(G
c) ≥ 1.

The second smallest eigenvalue of the Laplacian of a graph is known as its algebraic connectivity, and
is known to be closely related to how well-connected the graph is. Thus the Spread Conjecture can be
interpreted as quantifying how poorly connected both a graph and its complement can possibly be.

We will present a new conjecture on a lower bound for the algebraic connectivity using the eccentricity
of vertices in the graph. This will give a new approach to studying the Laplacian spread of a graph and
lead to a strengthening of the Laplacian Spread Conjecture.

This is joint work with Wayne Barrett (BYU), Emily Evans (BYU), and Tracy Hall (Hall Labs,
LLC).



Mon 20 June, 12:00, AC201 73 MS-5

Spectral Moore Theorems for Graphs and Hypergraphs

Sebastian M. Cioabă

University of Delaware, Department of Mathematical Sciences, Ewing Hall, Newark, DE 19716-2553, USA

The spectrum of a graph is closely related to many graph parameters. In particular, the spectral
gap of a regular graph which is the difference between its valency and second eigenvalue, is widely seen
an algebraic measure of connectivity and plays a key role in the theory of expander and Ramanujan
graphs. In this paper, I will give an overview of recent work studying the maximum order of a regular
graph (bipartite graph or hypergraph) of given valency whose second largest eigenvalue is at most a given
value. This problem can be seen as a spectral Moore problem and has close connections to Alon-Boppana
theorems for graphs and hypergraphs and with the usual Moore or degree-diameter problem.

Keywords: Eigenvalues, Alon-Boppana theorem, Ramanujan graphs, spectral Moore bound

This is joint work with Jack Koolen, Masato Mimura, Hiroshi Nozaki, Takayuki Okuda and Jason
Vermette.



Mon 20 June, 12:30, AC201 74 MS-5

Oriented Cayley graphs with all eigenvalues being rational multiples of each
other

Xiaohong Zhang

University of Waterloo

Let G be a finite abelian group. A Cayley graph on G is a Cayley digraph X(G,C) such that C = −C.
Bridges and Mena gave a characterization of when a Cayley graph has only integer eigenvalues in 1982 [1].
Here we consider oriented Cayley graph on G, a Cayley digraph X(G,C) such that C ∩ (−C) = ∅, and
its (0, 1,−1) skew-symmetric adjacency matrix. We give a characterization of when all the eigenvalues
of X are integer multiples of

√
∆ for some square-free integer ∆ < 0. This also characterizes oriented

Cayley graphs on which the continuous quantum walks are periodic, a necessary condition for the walk
to admit uniform mixing or perfect state transfer.

This is joint work with Chris Godsil (Waterloo)
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Tue 21 June, 10:30, AC201 75 MS-5

Alternating sign matrices of finite multiplicative order

Rachel Quinlan

National University of Ireland, Galway

An alternating sign matrix (ASM) is a square (0, 1,−1)-matrix in which the non-zero entries alternate
in each row and column, beginning and ending with 1. Examples of ASMs include permutation matrices,
and there are contexts in which the set of n×n ASMs may be seen as a natural extension or completion
of the set of permutation matrices. Unlike the permutation matrices which form a group, the ASMs are
not equipped with any apparent algebraic structure, and the permutation matrices are the only ones
to generate cyclic groups whose elements are all ASMs. Nevertheless, there exist (non-permutation)
n × n ASMs that have finite multiplicative order, and that have have finite orders not occurring in the
symmetric group of degree n.

We investigate alternating sign matrices that are not permutation matrices, but have finite order in a
general linear group. We classify all such examples of the form P +T , where P is a permutation matrix
and T has four non-zero entries, forming a square with entries 1 and −1 in each row and column. We
show that the multiplicative orders of these matrices do not always coincide with those of permutation
matrices of the same size. We pose the problem of identifying finite subgroups of general linear groups
that are generated by alternating sign matrices.

This is joint work with Cian O’Brien (Cardiff University)



Tue 21 June, 11:00, AC201 76 MS-5

Comparability and cocomparability bigraphs

Jephian C.-H. Lin

National Sun Yat-sen University

Let F be a family of 0, 1-matrices. A 0, 1-matrix M is symmetrically F-free if there is a permutation
matrix P such that P>MP does not contain any S ∈ F as a submatrix. For a given graph G, the
neighborhood matrix of G is defined as A(G) + I, where A(G) is the adjacency matrix and I is the
identity matrix. Several important graph classes are known to have a characterization from the matrix
point of view. For example, let

Γ =

[
1 1
1 0

]
and slash =

[
0 1
1 0

]
. (1)

Thus, the strongly chordal graphs are the graphs whose neighborhood matrix is symmetrically {Γ}-free;
the cocomparability graphs are the graphs whose neighborhood matrix can be permuted to avoid slash

on the main diagonal; and the interval graphs are the graphs whose neighborhood matrix is symmetrically
{Γ, slash}-free. Note that the set of interval graphs is the intersection of the set of strongly chordal graphs
and the set of cocomparability graphs. There are bipartite analogues for the strongly chordal graphs and
the interval graphs, namely, the bipartite chordal graphs and the interval containment bigraphs. In this
talk, we introduce the cocomparability bigraphs from the matrix perspective as a bipartite analogue to
the cocomparability graphs.

This is joint work with Pavol Hell (Simon Fraser University), Jing Huang (University of Victoria),
and Ross M. McConnell (Colorado State University).



Tue 21 June, 11:30, AC201 77 MS-5

Spectral restrictions for certain symmetric ±1-matrices with applications to
equiangular lines

Gary Greaves

Nanyang Technological University, Singapore

Given some dimension d, what is the maximum number, N(d), of lines in Rd such that the angle
between any pair of lines is constant? (Such a system of lines is called “equiangular”.) This classical
problem was initiated by Haantjes in 1948 in the context of elliptic geometry. In 1966, Van Lint and Seidel
showed certain symmetric {±1}-matrices, called Seidel matrices, can be associated to an equiangular line
system. Up until 2021, N(14) was the smallest unknown value of the sequence (N(d))d∈N.

In this talk, I will present a recently discovered restriction on the characteristic polynomial of Seidel
matrices has enabled us to determine the sequence (N(d))d∈N all the way up to d = 17.

This talk is based on joint work with Jeven Syatriadi (Nanyang Technological University) and Pavlo
Yatsyna (Charles University).



Tue 21 June, 12:00, AC201 78 MS-5

Orthogonality for (0,−1) tropical normal matrices

M.J. de la Puente

Universidad Complutense

We study pairs (A,B) of order n real matrices operated with tropical sum ⊕ = max and multiplication
� = + (multiplication symbol omitted in the sequel). A pair is orthogonal if AB = Zn = BA, where Zn
is the all zero matrix. Restriction to the semiring (ordered, additively idempotent) R of normal matrices
(i.e., real non–negative matrices with null diagonal) makes the problem more meaningful. Restriction to
Boolean normal matrices (i.e., matrices over the (ordered, additively idempotent) semiring R = {0,−1})
makes the problem combinatorial.

The more zeros in a pair (A,B), the more likely that AB = Zn = BA happens. We prove that the
minimal number of zeros in an orthogonal pair is 4n−6, for n ≥ 7. Pairs attaining this minimum happen
in four types. This orthogonality binary relation is also studied in terms of relation graphs.

This is joint work with Bakhad Bakhadly (Moscow) and Alexander Guterman (Moscow). Supported
by PID2019-107701GB-I00, Ministerio de Ciencia e Innovación and 910444 Grupo UCM.



Fri 24 June, 10:30, AC201 79 MS-5

Combinatorial Perron Parameters and Classes of Trees

Enide Andrade

Department of Mathematics, University of Aveiro, Portugal

The main goal of this talk is to present recent results related with the combinatorial Perron param-
eters introduced in [1,2] for certain classes of trees, and related bounds for these parameters. These
parameters are related to algebraic connectivity of trees and corresponding centers.

This is joint work with Lorenzo Ciardo (University of Oxford) and Geir Dahl (University of Oslo).
Enide Andrade is supported by Center for Research and Development in Mathematics and Applications
(CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a
Ciência e a Tecnologia), UIDB/04106/2020 and UIDP/04106/2020.
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Fri 24 June, 11:00, AC201 80 MS-5

Kemeny’s constant for a chain of connected graphs with respect to a tree

Sooyeong Kim

Università di Pisa

In this talk, I provide a formula, with a sketch of the proof, for Kemeny’s constant for a graph with
bridges, in terms of quantities inherent to the subgraphs upon removal of all bridges: resistance matrices,
degree vectors, and the numbers of edges. With the formula, I present several optimization problems for
Kemeny’s constant for graphs with bridges, and answer some of the problems. Finally, I remark some
potential applications regarding the optimization problems and computation.

This is joint work with Jane Breen (Ontario Tech University) and Emanuele Crisostomi (Università
di Pisa). Supported by the Research Project PRIN 2017 “Advanced Network Control of Future Smart
Grids” funded by the Italian Ministry of University and Research (2020–2023).



Fri 24 June, 11:30, AC201 81 MS-5

Minimum number of distinct eigenvalues allowed by a sign pattern

Minerva Catral

Xavier University

For a real square matrix A, q(A) denotes the number of distinct eigenvalues of A. Sign pattern A is
a square matrix with entries in {+,−, 0}. We introduce the study of the minimum possible value of q(A)
over all matrices A with sign pattern A. This minimum value is denoted q(A). We explore q(A) using
digraph properties of the sign pattern, and characterize q(A) for small order sign patterns.

This is joint work with J. Breen, C. Brouwer, M. Cavers, P. van den Driessche and K. Vander
Meulen.
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MS-6: The inverse eigenvalue problem
for graphs

Organisers: Jephian Lin (National Sun Yat-sen University, Taiwan) and Polona Oblak
(University of Ljubljiana)

Theme: A generalized adjacency matrix of a graph is a symmetric matrix whose off-diagonal
entry is nonzero if and only if it corresponds to an edge of the graph, while the diagonal entries
can be chosen as any real number. The inverse eigenvalue problem for graphs (IEPG) studies the
generalized adjacency matrices of a given graph and aims to find the possible spectra of them.
Various related questions can be asked: What is the maximum nullity over all generalized adjacency
matrices, and what is the minimum rank? What is the minimum number of distinct eigenvalues?
Recently, new techniques, called the strong properties, are developed using the implicit function
theorem and have found significant applications to the IEPG.
The minisymposium will present recent progress and open problems in IEPG.

20 June 14:30 AC213 Shaun Fallat p83
On the maximum multiplicity of the kth largest eigenvalue of a graph.

20 June 15:00 AC213 Franklin Kenter p84
A zero forcing menagerie: the ordered multiplicity inverse eigenvalue sequence problem, powers of g. . .

20 June 15:30 AC213 Mary Flagg p85
The Strong Nullity Interlacing Property

20 June 16:00 AC213 Bryan Curtis p86
Strong Spectral Norm Property

22 June 10:30 AC213 Shahla Nasserasr p87
The Allows Problem for Graphs with Two Distinct Eigenvalues

22 June 11:00 AC213 Polona Oblak p88
On the number of distinct eigenvalues of joins of two graphs

22 June 11:30 AC213 Derek Young p89
Inverse eigenvalue and related problems for hollow matrices described by graphs

23 June 14:00 AC213 Rupert Levene p90
Spectral arbitrariness for trees fails spectacularly, I

23 June 14:30 AC213 H. Tracy Hall p91
Spectral arbitrariness for trees fails spectacularly, II



Mon 20 June, 14:30, AC213 83 MS-6

On the maximum multiplicity of the kth largest eigenvalue of a graph.

Shaun Fallat

University of Regina

Given a graph G, we are interested in studying the maximum nullity over all real symmetric matrices
S(G) constrained by a fixed number of negative eigenvalues. For the case of trees we re-derive a formula
for this maximum nullity and completely describe its behaviour as a function of the number of negative
eigenvalues. We build on this analysis by presenting an analogous result for unicyclic graphs and verifying
a surprising relation between this maximum nullity and a 2-player version of zero forcing for threshold
graphs.

Part of this work joint with Mohammad Adm (Palestine Polytechnic) and part is joint project with the
2021 DMRG at the University of Regina. Research supported in part by an NSERC Discovery Research
Grant, Grant No. RGPIN-2019-03934.



Mon 20 June, 15:00, AC213 84 MS-6

A zero forcing menagerie: the ordered multiplicity inverse eigenvalue
sequence problem, powers of graphs, and more

Franklin Kenter

United States Naval Academy

Given a graph G, one may ask: “What sets of eigenvalues are possible over all weighted adjacency
matrices of G?” (Here, negative and diagonal weights are allowed). This is known as the Inverse
Eigenvalue Problem for Graphs (IEPG) A mild relaxation of this question considers the multiplicity
sequence instead of the exact eigenvalues themselves. For instance, given a graph G on n vertices and an
ordered partition m = (m1, . . . ,m`) of n, is there a weighted adjacency matrix where the i-th distinct
eigenvalue has multiplicity mi? This is known as the ordered multiplicity inverse eigenvalue sequence
problem. Recent work has solved this problem for all graphs on 6 vertices.

In this talk, we develop zero forcing methods for the ordered multiplicity IEPG in a multitude of
different contexts. Namely, we apply a menagerie of zero forcing parameters on powers of graphs to
achieve bounds on sums of various multiplicities. Not only can we verify the above result in a more
straight-forward manner, but we apply our techniques to skew-symmetric matrices, nonnegative matrices,
among others.

This is joint work with Jephian C.-H. Lin (National Sun Yat-sen University). Supported in part
by the National Science Foundation, Grant DMS-1720225, and the Office of Naval Research, Grant
ONR-749N0016120WX00637, and Taiwan Ministry of Science and Technology, Grant MOST-109-2536-
M-110-006.



Mon 20 June, 15:30, AC213 85 MS-6

The Strong Nullity Interlacing Property

Mary Flagg

University of St. Thomas

Given a graph G, let S(G) be the set of all real symmetric matrices with graph G. Strong properties
have been very useful to assert that if there is a matrix in S(G), with particular eigenvalue properties,
then there exists a matrix in S(H) with the same properties for any supergraph H on the same vertex
set as G.

The Cauchy interlacing inequalities give the relationship between the eigenvalues of a matrix A ∈ S(G)
and the eigenvalues of its principal submatrix A(n) formed by deleting row and column n, which may be
viewed as the matrix for the graph G − n obtained by deleting vertex n. The strong nullity interlacing
property is a tool for creating supergraph H of G with the property that there exists a matrix B ∈ H
such that the nullities of B and B(n) are the same as those of A and A(n), respectively.

This is joint work with Aida Abiad (Maastricht University), Bryan A. Curtis (Iowa State University),
H. Tracy Hall (T. Hall LLC), Jephian C.-H. Lin (National Sun Yat-Sen University), Bryan Shader
(University of Wyoming), John Sinkovic (Brigham Yound University). This work is partially supported
by the American Institute of Mathematics through the IEPG Research Community.



Mon 20 June, 16:00, AC213 86 MS-6

Strong Spectral Norm Property

Bryan Curtis

Iowa State University

A sign pattern is a matrix with entries coming from the set {0, 1,−1}. The sign pattern of a real
matrix is the sign pattern obtained by replacing each positive and negative entry with a 1 and −1,
respectively. The class of all real matrices with sign pattern S is denoted Q(S). For a given sign pattern
S, we are interested in what can be said about the singular values of matrices in Q(S). More specifically,
we shall investigate the set of m × n matrices that have a largest singular value of fixed multiplicity k,
denoted O(m,n, k), and their sign patterns. In this talk we introduce the strong spectral norm property
(SSNP) and demonstrate how the SSNP is used to study the sign patterns of matrices in O(m,n, k).

This is joint work with Bryan Shader (University of Wyoming)



Wed 22 June, 10:30, AC213 87 MS-6

The Allows Problem for Graphs with Two Distinct Eigenvalues

Shahla Nasserasr

Rochester Institute of Technology

For a graph G, the minimum number of distinct eigenvalues over all matrices whose nonzero off-
diagonal entries correspond to the edges of G is denoted by q(G). Considering connected graphs G, the
allows problem asks how many edges are necessary to allow q(G) = 2. In this talk we discuss the current
advances on the allows problem.

This is joint work with the AIM Qq Group.



Wed 22 June, 11:00, AC213 88 MS-6

On the number of distinct eigenvalues of joins of two graphs

Polona Oblak

University of Ljubljana

We introduce a combinatorial necessary condition for the join G ∨ H of graphs G and H to be
the pattern of an orthogonal symmetric matrix, or equivalently, that the minimum number of distinct
eigenvalues q(G ∨H) is equal to two. This combinatorial property depends on a notion of compatibility
between the possible multiplicity lists for the graphs G and H. In some cases this necessary condition
is also sufficient and hence completely resolves the question of when q(G ∨ H) = 2. We present some
special cases and consequences.

This is joint work with Rupert H. Levene and Helena Šmigoc (University College Dublin).



Wed 22 June, 11:30, AC213 89 MS-6

Inverse eigenvalue and related problems for hollow matrices described by
graphs

Derek Young

Mount Holyoke College

A hollow matrix described by a graph G is a real symmetric matrix having all diagonal entries
equal to zero and with the off-diagonal entries governed by the adjacencies in G. For a given graph G,
the determination of all possible spectra of matrices associated with G is the hollow inverse eigenvalue
problem for G. In this talk, solutions to the hollow inverse eigenvalue problems for paths and complete
bipartite graphs are presented. Results for related subproblems such as possible ordered multiplicity lists,
maximum multiplicity of an eigenvalue, and minimum number of distinct eigenvalues are presented for
additional families of graphs.



Thu 23 June, 14:00, AC213 90 MS-6

Spectral arbitrariness for trees fails spectacularly, I

Rupert Levene

University College Dublin

If G is a graph and m is an ordered multiplicity list which is realisable by at least one symmetric
matrix with graph G, what can we say about the eigenvalues of all such realising matrices for m? While
it is tempting to believe that every set of distinct real eigenvalues should always be realisable (spectral
arbitrariness), in [1], F. Barioli and S. Fallat produced the first counterexample: a tree G on 10 vertices
and an ordered multiplicity list m for which every realising set of eigenvalues obeys a nontrivial linear
constraint. We extend this by giving an infinite family of trees and ordered multiplicity lists whose sets
of realising eigenvalues are very highly constrained, with at most 5 degrees of freedom, regardless of the
size of the tree in this family.

This is joint work with, Shaun M. Fallat, H. Tracy Hall, Seth A. Meyer, Shahla Nasserasr, Polona
Oblak and Helena Šmigoc.
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Thu 23 June, 14:30, AC213 91 MS-6

Spectral arbitrariness for trees fails spectacularly, II

H. Tracy Hall

Hall Labs, LLC (Provo, UT, USA)

The Inverse Eigenvalue Problem for a Graph asks what spectra are possible for a real symmetric
matrix whose pattern of off-diagonal nonzero entries is exactly specified by a given graph G. An important
relaxation of this problem asks only which ordered multiplicity lists of eigenvalues are possible. It was
thought for a time that, at least in the case where G has no cycles, the two questions might be equivalent—
that an achievable ordered list of multiplicities would always be spectrally arbitrary, achievable with any
prescribed set of gaps bridging from one multiplicity to the next. This early hope was dashed by F. Barioli
and S. Fallat, who produced a small counterexample tree whose eigenvalue gaps, for a particular ordered
multiplicity list, must satisfy a linear constraint [1].

We show that for a very broad family of trees there exist multiplicity lists whose eigenvalue gaps must
satisfy many more, typically non-linear, constraints. The failure of spectral arbitrariness culminates in
an example, for any tree in the family of sufficient depth, of a multiplicity list whose relative spacing of
eigenvalues is completely rigid.

This is ongoing joint work with Shawn M. Fallat, Rupert Levene, Seth A. Meyer, Shahla Nasserasr,
Polona Oblak, and Helena Šmigoc.
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MS-7: General preservers

Organiser: Lajos Molnár (University of Szeged)

20 June 11:00 AC215 Antonio M. Peralta p93
Distance-preserving bijections between sets of invertible elements in unital Jordan-Banach algebras

20 June 11:30 AC215 Tamás Titkos p94
On isometric rigidity of Wasserstein spaces

20 June 12:00 AC215 Jerónimo Alaminos p95
On property (B) and zero product determined Banach algebras

21 June 10:30 AC215 Peter Šemrl p96
Automorphisms of effect algebras

21 June 11:00 AC215 Mark Pankov p97
Adjacency preserving transformations of conjugacy classes of finite-rank self-adjoint operators

21 June 11:30 AC215 Janko Bračič p98
Collineations of a linear transformation

22 June 10:30 AC215 Apoorva Khare p99
Preservers of moment sequences

22 June 11:00 AC215 Dániel Virosztek p100
Barycenters of Hellinger distances and Kubo-Ando means as barycenters

22 June 11:30 AC215 Lajos Molnár p101
Preservers related to the geometric mean and its variants



Mon 20 June, 11:00, AC215 93 MS-7

Distance-preserving bijections between sets of invertible elements in unital
Jordan-Banach algebras

Antonio M. Peralta

Instituto de Matemáticas de la Universidad de Granada (IMAG). Departamento de Análisis Matemático,

Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.

It is known that the structure of the group, A−1, of invertible elements of a unital Banach algebra
A does not determine uniquely the structure of the algebra, there are examples of non-isomorphic unital
Banach algebras A and B whose groups of invertible elements are topologically isomorphic. If we also
assume a preservation of the metric structure induce by the norm on the group of invertible elements, the
answer is different. O. Hatori proved in [1] that, for each surjective isometry ∆ from an open subgroup
of the group of invertible elements in an associative unital semisimple commutative Banach algebra A
onto an open subgroup of the group of invertible elements in an associative unital Banach algebra B, the
mapping ∆(1)−1∆ is an isometric group isomorphism, which extends to an isometric real-linear algebra
isomorphism from A onto B.

In this talk we shall try to understand the general form of a bijection preserving distances between the
sets, M−1 and N−1, of invertible elements of two unital Jordan-Banach algebras M and N, respectively.
In this case, if M ⊆ M−1 and N ⊆ N−1 are clopen subsets of M−1 and N−1, respectively, which are
closed for powers, inverses and products of the form Ua(b), and ∆ : M→ N is a surjective isometry, then
there exists a surjective real-linear isometry T0 : M → N and an element u0 in the McCrimmon radical
of N such that ∆(a) = T0(a) + u0 for all a ∈M. The conclusion is even more satisfactory in the case of
unital JB∗-algebras.

Bibliography
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Mon 20 June, 11:30, AC215 94 MS-7

On isometric rigidity of Wasserstein spaces

Tamás Titkos

Alfréd Rényi Institute of Mathematics

Given a metric space (X, r) and a subset S ⊆ P(X) of all probability measures, one can endow S with
various metrics, depending on what kind of measurement is suitable for the problem under consideration.
For example, the Kolmogorov-Smirnov metric dKS on S = P(R) is frequently used in statistics to compare
a sample with a reference probability distribution. The Lévy-Prokhorov metric dLP plays an important
theoretical role in several limit theorems in probability theory. In this case, (X, %) is a complete separable
metric space, and S = P(X). The quadratic Wasserstein metric dW2 turned out to be very effective in
a wide range of AI applications including pattern recognition and image processing problems. In these
applications, (X, r) is typically the n-dimensional Euclidean space, and S is the collection of all Borel
probability measures with finite second moment.

In recent years, there has been a considerable interest in the characterization of surjective distance
preserving maps of the above-mentioned (and many other) metric spaces of measures, see e.g. [1, 2, 3,
4, 4, 5, 6, 7, 8]. In most cases, it turned out that isometries of S are strongly related to self-maps of the
base space.

In this talk, we will describe the structure of isometries in the cases when (X, r) is a separable real
Hilbert space [4, 5] or a graph metric space [6], and S is the collection of all Borel probability measures
with finite p-th moment for some p ≥ 1.

This is joint work with György Pál Gehér, Gergely Kiss, and Dániel Virosztek. Supported by the
Momentum Program of the Hungarian Academy of Sciences (grant no. LP2021-15/2021) and by the
Hungarian National Research, Development and Innovation Office - NKFIH (grant no. K115383).
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Mon 20 June, 12:00, AC215 95 MS-7

On property (B) and zero product determined Banach algebras

Jerónimo Alaminos

University of Granada

We will briefly survey examples and counterexamples about property (B) and zero product determined
Banach algebras.



Tue 21 June, 10:30, AC215 96 MS-7

Automorphisms of effect algebras

Peter Šemrl

University of Ljubljana

There are several relations and operations on effect algebras that are important in mathematical
foundations of quantum mechanics. Among them are the usual partial order, coexistency, and orthocom-
plementation. Automorphisms of effect algebras with respect to these relations and/or operations will
be discussed.



Tue 21 June, 11:00, AC215 97 MS-7

Adjacency preserving transformations of conjugacy classes of finite-rank
self-adjoint operators

Mark Pankov

University of Warmia and Mazury

Classical Chow’s theorem states that bijective transformations of Grassmannians preserving the ad-
jacency relation in both directions are induced by semilinear automorphisms of the corresponding vector
spaces and semilinear isomorphisms to the dual vector spaces. Every Hilbert Grassmannian can be nat-
urally identified with a conjugacy class of finite-rank projections. Chow’s theorem reformulated in these
terms was successfully exploited to prove Wigner-type theorems. We extend the concept of adjacency on
conjugacy classes of finite-rank self-adjoint operators (such an extension is not immediate). If operators
from such a class have at least three eigenvalues, then every bijective transformation of this class pre-
serving the adjacency relation in both directions is induced by a unitary or anti-unitary operator up to
a permutation of eigenspaces with the same dimensions. For conjugacy classes with two eigenvalues the
above statement fails.

This is joint work with Krzysztof Petelczyc (Bia lystok) and Mariusz Żynel (Bia lystok).



Tue 21 June, 11:30, AC215 98 MS-7

Collineations of a linear transformation

Janko Bračič

University of Ljubljana, Slovenia

Given a linear transformation A on a finite-dimensional complex vector space V , we study the group
Col(A) consisting of those invertible linear transformations S on V for which the mapping ΦS defined
as ΦS : M 7→ SM is an automorphism of the lattice Lat(A) of all invariant subspaces of A. By using
the primary decomposition of A, we first reduce the problem of characterizing Col(A) to the problem
of characterizing the group Col(N) of a given nilpotent linear transformation N . While Col(N) always
contains all invertible linear transformations of the commutant (N)′ of N , it is always contained in the
reflexive cover AlgLat(N)′ of (N)′. We prove that Col(N) is a proper subgroup of (AlgLat(N)′)−1 if and
only if at least two Jordan blocks in the Jordan decomposition of N are of dimension 2 or more.

This is joint work with Marko Kandić (University of Ljubljana). Supported by the Slovenian Research
Agency through the research program P2-0268.
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Preservers of moment sequences

Apoorva Khare

Indian Institute of Science; and Analysis and Probability Research Group (Bangalore, India)

Call a measure on R admissible if it is non-negative and admits all moments. We classify all functions
on the real line which when applied termwise, preserve the class of moment-sequences of admissible
measures (i.e., take one such sequence to another). We show that all such functions are absolutely
monotonic – and conversely – and that surprisingly, it suffices to restrict the test measures to three
point masses in [−1, 1]. This strengthens and parallels a dimension-free positivity preserver result by
Schoenberg [Duke 1942] and Rudin [Duke 1959], and is joint work with Belton, Guillot, and Putinar
[JEMS, to appear].

http://dx.doi.org/10.1215/S0012-7094-42-00908-6
http://dx.doi.org/10.1215/S0012-7094-59-02659-6
http://dx.doi.org/10.4171/jems/1145
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Barycenters of Hellinger distances and Kubo-Ando means as barycenters

Dániel Virosztek

Alféd Rényi Institute of Mathematics, Hungary

The first part of the talk is devoted to quantum Hellinger distances — introduced recently by Bhatia
et al. [1] — with a particular emphasis on barycenters. We introduce the family of generalized quantum
Hellinger divergences that are of the form φ(A,B) = Tr ((1− c)A+ cB −AσB) , where σ is an arbitrary
Kubo-Ando mean, and c ∈ (0, 1) is the weight of σ. We note that these divergences belong to the family of
maximal quantum f -divergences, and hence are jointly convex, and satisfy the data processing inequality
(DPI). We will present a fixed-point equation that characterizes of the barycenter of finitely many positive
definite operators for these generalized quantum Hellinger divergences [3].

In the second part, we present a divergence center interpretation of general symmetric Kubo-Ando
means [4]. This characterization of the symmetric means naturally leads to a definition of weighted and
multivariate versions of a large class of symmetric Kubo-Ando means. We study elementary properties
of these weighted multivariate means, and note in particular that in the special case of the geometric
mean we recover the weighted A#H-mean introduced by Kim, Lawson, and Lim [2].

This is joint work with József Pitrik (TU Budapest). Virosztek is supported by the Momentum program
of the Hungarian Academy of Sciences under grant agreement no. LP2021-15/2021.
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Preservers related to the geometric mean and its variants

Lajos Molnár

University of Szeged and Budapest University of Technology and Economics

We consider positive definite cones in operator algebras equipped with the operation of the usual
Kubo-Ando geometric mean or one of its variants (Rényi power mean, Fiedler-Pták spectral geometric
mean, log-euclidean mean). We study the precise structures of the corresponding isomorphisms, especially
those relating to the Fiedler-Pták spectral geometric mean. The problem concerning their isomorphisms
is the one that currently seems to be the most exciting and challenging.

A part of this talk is based on a joint work with Lei Li (Nankai University) and Liguang Wang (Qufu
Normal University). The speaker is supported by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, project no. TKP2021-NVA-09, and also
by the National Research, Development and Innovation Office of Hungary, NKFIH, grant no. K134944.
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MS-8: Distance matrices of graphs

Organisers: Projesh Nath Choudhury and Apoorva Khare

Theme: Distance matrices associated to graphs have been explored intensively in the literature
for several decades now, both from an algebraic and a spectral viewpoint. They have connections
to graph embeddings, communications networks, and quantum chemistry among other areas. This
minisymposium will bring together researchers working on distance matrices from a variety of
perspectives, and discuss modern approaches and recent results.

21 June 10:30 AC202 Aida Abiad p103
Extending a conjecture of Graham and Lovász on the distance characteristic polynomial

21 June 11:00 AC202 Projesh Nath Choudhury p104
Blowup-polynomials of graphs

21 June 11:30 AC202 Carlos A. Alfaro p105
Distance ideals of graphs

21 June 12:00 AC202 Lorenzo Ciardo p106
Two moments for trees

23 June 10:30 AC202 Leslie Hogben p107
Spectra of Variants of Distance Matrices of Graphs

23 June 11:00 AC202 Carolyn Reinhart p108
The distance matrix and its variants for digraphs
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Extending a conjecture of Graham and Lovász on the distance characteristic
polynomial

Aida Abiad

Eindhoven University of Technology, Ghent University, Vrije Universiteit Brussel

Graham and Lovász conjectured in 1978 that the sequence of normalized coefficients of the distance
characteristic polynomial of a tree is unimodal with the maximum value occurring at bn2 c for a tree T
of order n. We extend this old conjecture to block graphs. In particular, we prove the unimodality part
and we establish the peak for several extremal cases of block graphs.
This is joint work with B. Brimkov, S. Hayat, A. Khramova and J. Koolen.
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Blowup-polynomials of graphs

Projesh Nath Choudhury

Department of Mathematics

Indian Institute of Science, Bangalore

Given a finite simple connected graph G = (V,E) (or even a finite metric space), we introduce a novel
invariant which we call its blowup-polynomial pG(nv : v ∈ V ). To do so, we compute the determinant of
the distance matrix of the graph blowup, obtained by taking nv copies of the vertex v, and remove an
exponential factor. First: we show that as a function of the sizes nv, pG is a polynomial, is multi-affine, and
is real-stable. Second: we show that the multivariate polynomial pG fully recovers G. Third: we obtain
a novel characterization of the complete multi-partite graphs, as precisely those whose “homogenized”
blowup-polynomials are Lorentzian/strongly Rayleigh.

Joint with Apoorva Khare.
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Distance ideals of graphs

Carlos A. Alfaro

Banco de México

Distance ideals of graphs generalize, among other graph paramethers, the spectrum and the Smith
normal form (SNF) of distance and distance Laplacian matrices. In particular, they allow us to introduce
the notion of codeterminantal graphs, which generalize the concepts of cospectral and coinvariant graphs.
We show computational results on codeterminantal graphs up to 9 vertices. Although the spectrum of
several graph matrices has been widely used to determine graphs, the computational results suggest that
the SNF of the distance Laplacian matrix seems to perform better for determining graphs. Finally, we
show that complete graphs and star graphs are determined by the SNF of its distance Laplacian matrix.

This is joint work with Aida Abiad (Eindhoven University of Technology and Ghent University),
Kristin Heysse (Macalester College), Libby Taylor (Stanford University) and Marcos C. Vargas (Banco
de México).
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Two moments for trees

Lorenzo Ciardo

University of Oxford

The moment of a force F applied to a point particle having distance d from a fixed fulcrum is the
cross product d×F. We consider two graph-theoretic versions of this notion, of different nature: Given a
rooted tree T , its combinatorial moment µ is given by the sum over each vertex v of the distance of v from
the root times the degree of v; its spectral moment ρ is the largest eigenvalue of a square matrix encoding
the “common distance” from the root of pairs of vertices in T . The features of both these parameters
resemble those of their physical counterpart. Therefore, they share a similar behaviour with respect to
elementary constructions on trees. This allows us to show that µ is essentially an upper bound for ρ, and
the ratio µ/ρ is at most linear in the order of T ; specific classes of trees having a fractal structure allow
to conclude that µ/ρ is in fact unbounded in general.

Interestingly, both µ and ρ are closely linked to connectivity notions for graphs – Kemeny’s constant
κ and algebraic connectivity α, respectively. As a consequence, the quantitative comparison between the
two moments promises to shed some light on the still shadowy relation between κ and α.
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Spectra of Variants of Distance Matrices of Graphs

Leslie Hogben

Iowa State University and American Institute of Mathematics

In the last ten years, variants of the distance matrix of a graph, such as the distance Laplacian, the
distance signless Laplacian, and the normalized distance Laplacian matrix of a graph, have been studied.
This talk compares and contrasts techniques and results for these four variants of distance matrices. New
results are obtained by cross-applying techniques from one variant of the distance matrix to another are
presented.

This is joint work with Carolyn Reinhart (Swarthmore).
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The distance matrix and its variants for digraphs

Carolyn Reinhart

Swarthmore College

A directed graph, or digraph, is a graph in which edges are replaced by directional arcs. While the
distance matrix and its variants are symmetric matrices when defined on graphs, these matrices are not
necessarily symmetric on digraphs. Thus, some of the techniques used in the graph case no longer apply.
This talk will discuss techniques used to study distance matrices for digraphs and some results they have
yielded. New results regarding cospectrality for the distance matrix of digraphs will also be presented.

This is joint work with Leslie Hogben (Iowa State University and AIM).
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MS-9: Linear algebra education

Organisers: Anthony Cronin (University College Dublin) and Sepideh Stewart (Uni-
versity of Oklahoma)

Theme: Given the technological advancements of the modern era, the teaching and learning of lin-
ear algebra has never been more important for students. This minisymposium aims to draw out the
challenges and highlight current practice in linear algebra instruction. The 12 talks from presen-
ters from 5 countries will include topics such as: Technology enhanced learning, What Should We
Teach in Elementary Linear Algebra Courses Today, Motivating Undergraduate Spectral Theory
with Computer Labs, Training maths support tutors with linear algebra specific skills, Student
understanding of proof and rigour in a second course in university linear algebra,among many
others.

20 June 14:30 O’Flaherty Anthony Cronin and Sepideh Stewart p110
Analysis of Tutors’ Feedback After Responding to Linear Algebra Students’ Queries

20 June 15:00 O’Flaherty Ann Sophie Stuhlmann p111
Interactionist perspective on negotiation processes of students’ different understandings during s. . .

20 June 15:30 O’Flaherty Michelle Zandieh p112
Linear combinations of vectors in Inquiry-Oriented Linear Algebra (IOLA)

20 June 16:00 O’Flaherty John Sheekey p113
Incorporating Tensors into Linear Algebra Courses

21 June 10:30 O’Flaherty Sepideh Stewart and Anthony Cronin p114
Students’ Perspectives on Proofs in Linear Algebra: Ways of Thinking and Ways of Understanding in . . .

21 June 11:00 O’Flaherty Megan Wawro p115
Student Reasoning about Linear Algebra in Quantum Mechanics

21 June 11:30 O’Flaherty Amanda Harsy, Michael Smith p116
Application Approach to Teaching Linear Algebra

21 June 12:00 O’Flaherty Frank Uhlig p117
16 Questions and Answers for a Modern first Linear Algebra and Matrix Theory Course

24 June 10:30 O’Flaherty Emily J. Evans p118
From beginner to expert, increasing linear algebra fluency and comfort with Python labs.

24 June 11:00 O’Flaherty Heather Moon and Marie Snipes p119
Inspiring Linear Algebra Topics Using Image and Data Applications

24 June 11:30 O’Flaherty Günhan Caglayan p120
Pedagogy of linear combination and the levels of thinking about linear combination

24 June 12:00 O’Flaherty Damjan Kobal p121
Matrix zeros of polynomials
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Analysis of Tutors’ Feedback After Responding to Linear Algebra Students’
Queries

Anthony Cronin and Sepideh Stewart

University College Dublin and Oklahoma University

Using Mason’s (2002) pedagogical tactics, we created a conceptual framework to analyze mathematics
tutors’ responses to linear algebra students’ queries in a mathematics support center (MSC). The aim
was to investigate the nature of students’ difficulties with concepts in a second linear algebra course
emphasizing theories and proof, from the perspective of MSC tutors. We examined tactics employed by
these tutors to resolve student difficulties. We analyzed 227 feedback comments from 44 tutors based
on their interactions with 82 students over six years. Our findings indicated that the most common
areas of difficulty were basis, span (and their connection), in addition to vector space, subspace, and
proof. Tutor tactics deployed included: simplifying and complexifying, sense making of definitions and
theorems, discussion with students, and providing examples via a variety of representations. In this talk
we will discuss implications for linear algebra tutor training and indicate some future work.
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Interactionist perspective on negotiation processes of students’ different
understandings during small group work on linear algebra

Ann Sophie Stuhlmann

Universität Hamburg

Student group work represents a central learning setting within mathematics programs at the uni-
versity level. In my study, a theoretical perspective on collaboration is adopted in which the differences
between students’ interpretations of a mathematical concept are seen as an opportunity for individual
restructuring processes [1]. This so-called interactionist perspective is applied to student group work on
linear algebra. The concepts of linear algebra at the university level are characterized by a versatility
of different modes of expression and interpretation [2]. For instance, the concept of the dual space of
a vector space, represents the vector space of all linear forms of the vector space into its corresponding
field. This kind of nested structure of linear algebra concepts requires a cognitive flexibility that allows
switching between the different set levels and adopting different interpretations of the corresponding set
elements. For students of linear algebra, the flexible transitions between the different interpretations of
linear algebra concepts usually pose a challenge. This study focuses on how students negotiate their
different interpretations during group work on linear algebra and how transitions between interpretations
might be stimulated or hindered. Video recordings of eight student groups, each working on two different
tasks, were sampled. The first task required flexible transition between interpretations of group homo-
morphisms and the second one transitions between different viewpoints on linear forms in the context
of dual spaces. The recordings were analyzed from an interactionist perspective, focusing on interaction
situations in which the participating students expressed and negotiated different interpretations of the
group homomorphisms resp. linear forms. The analyses show students’ difficulties in communicating
about linear algebra concepts that can be expressed and interpreted differently.
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Linear combinations of vectors in Inquiry-Oriented Linear Algebra (IOLA)

Michelle Zandieh

Arizona State University

Linear combinations of vectors are ubiquitous across topic areas in a first course in linear algebra. This
presentation will report on students’ thinking with linear combinations of vectors in a selection of tasks
from the Inquiry-Oriented Linear Algebra (IOLA) curriculum development and research projects. The
IOLA team leverages Realistic Mathematics Education (RME) heuristics in our research design cycle. In
particular, we use experientially real starting points to engage students in activities that build toward
fundamental ideas in linear algebra. Linear combinations have been particularly important throughout
our curriculum design. The IOLA curriculum takes a vector first approach by starting with travel as
a metaphor for linear combinations of vectors. The Magic Carpet Ride (MCR) task sequence focuses
on the guided reinvention of span and linear independence by engaging students with tasks about travel
vectors including questions about what results are possible given different travel vectors or goal locations.

For this presentation I will discuss student thinking with two extensions of this task that leverage the
travel metaphor in new ways. The first of these is a new IOLA task sequence asking students to explore the
situation when the travel vectors cannot reach the intended destination and leading to the construction
of a least squares solution. The second is our development of two digital games that combine RME with
principles of game-based learning to engage students with linear combinations. Students manipulate
linear combinations of vectors to maneuver their avatar through a game scenario. The game feedback
allows for both overlapping and unique strategies when compared with the MCR task.

This is joint work with Dr. Megan Wawro (Virginia Tech), Dr. Christine Andrews-Larson (Florida
State University) and Dr. David Plaxco (Clayton State University). Supported by the National Science
Foundation, Grant DUE-1914841. This is joint work with Ashish Amresh (Arizona State University)
and Dr. David Plaxco (Clayton State University). Supported by the National Science Foundation, Grant
DUE-1712524.
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Incorporating Tensors into Linear Algebra Courses

John Sheekey

University College Dublin

Tensors are fundamental mathematical objects that arise in a variety of areas of mathematics and
physics. In finite dimensions they can be seen as a natural extension of matrices to higher dimensional
arrays, or more generally as multilinear maps and forms. Students often first encounter tensors in courses
on differential geometry or applied mathematics. However, there are many interesting and accessible
applications of tensors in the realm of linear algebra.

In this talk we will share some ideas for motivating the study of tensors in an advanced linear algebra
course. We will discuss classical applications such as the complexity of multiplication in an algebra, as well
as more recent applications arising from quantum information theory and post-quantum cryptography.
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Students’ Perspectives on Proofs in Linear Algebra: Ways of Thinking and
Ways of Understanding in the Formal World

Sepideh Stewart and Anthony Cronin

University of Oklahoma and University College Dublin

Many mathematics departments offer a second course in linear algebra. However, research on teaching
and learning the topics in second courses are scarce. To help fill this gap in the literature, in this study,
we interviewed 18 students taking a second linear algebra course in both the USA and Ireland. The
theoretical framework is based on Tall’s (2008) formal world of mathematical thinking and Harel’s (2008)
ways of thinking and ways of understanding. The goal of the study was to gain an understanding of the
teaching and learning of linear algebra proofs from students’ perspectives.

This work is in collaboration with Tien Tran and Aidan Powers
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Student Reasoning about Linear Algebra in Quantum Mechanics

Megan Wawro

Virginia Tech

Linear algebra is central in solving many quantum mechanics problems. Students often utilize math-
ematical concepts and procedures, mathematize physical constructs in terms of mathematical structures,
and interpret mathematical entities in terms of a physical context. In this talk, I summarize findings from
two research studies based on interviews with quantum mechanics students. In the first study, students
were asked to determine the probabilities with which measuring Sz and Sy would yield ±~

2 ; results focus
on how students’ reasoning with orthonormal bases, change of basis, and inner products informed their
flexibility in choosing problem-solving approaches. In the second study, students were asked to explain
what the equations A~x = λ~x and Ŝx |+〉x = ~

2 |+〉x meant to them and to compare and contrast how
they conceptualized eigentheory in the two situations; results focus on students’ nuanced imagery for the
eigenequations and highlight instances of synergistic and potentially incompatible interpretations. I hope
the research findings spur conversation about the relationship between what is taught in linear algebra
courses and quantum mechanics courses, and what experiencing and making sense of both courses might
be like for students.

This is supported by the United States National Science Foundation, DUE-1452889.
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Application Approach to Teaching Linear Algebra

Amanda Harsy, Michael Smith

Lewis University, Lewis University,

This presentation is a follow-up talk to “Inspiring Linear Algebra Topics Using Image and Data
Applications” during which we will share our creation of a first-year applied linear algebra course. This
course implements IMAGEMath modules and other activities which connect linear algebra concepts to
applications such as computer graphics and sports analytics. We have found that giving students the
opportunity to learn accessible modeling techniques used by researchers enhances their experience in their
mathematics courses and provides them with a clear application of linear algebra concepts. We organize
these activities as 50-minute lab modules in our own classes, and we will also share ways of transforming
these exercises into smaller in-class lessons or larger semester-long research projects. These activities
have been implemented in a variety of teaching modalities including asynchronous and synchronous
online classes. This is joint work with Tom Asaki, Heather Moon, and Marie Snipes.

This is a joint presentation with Amanda Harsy and Michael Smith.



Tue 21 June, 12:00, O’Flaherty 117 MS-9

16 Questions and Answers for a Modern first Linear Algebra and Matrix
Theory Course

Frank Uhlig

Department of Mathematics and Statistics,

Auburn University, Auburn, AL 36849-5310, USA

This is a sequel to my Seattle Joint Math Meeting talk (zoom in April 2022) titled “Taking our
First Linear Algebra Course into the Third Millennium”, see http://webhome.auburn.edu/~uhligfd/

Talkslides2022.

Be advised to read or watch the invited 1 hour JMM talk in preparation for these questions as we
discuss and try to answer them now at ILAS 2022 in Galway.

This session is book-ended in front by the JMM Linear Algebra Education session in Seattle and in
back by the ILAS Education Committee’s efforts to create and gather lesson plans, pedagogical advice
and problem sets that will deal with Linear Algebra at the elementary and separately at the applied level
in light of modern Matrix Theory.

In between the book-ends I like to ask the audience to please share their ideas and their history
with Linear Algebra freely so that our community’s consciousness levels can be appraised for our future
teaching efforts and your understanding of common teaching successes and possible failures.

http://webhome.auburn.edu/~uhligfd/Talkslides2022
http://webhome.auburn.edu/~uhligfd/Talkslides2022
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From beginner to expert, increasing linear algebra fluency and comfort with
Python labs.

Emily J. Evans

Brigham Young University

Nine years ago, a new program in applied and computational mathematics was introduced at Brigham
Young University that included a set of Python-based computer labs to reinforce our teaching of advanced
spectral theory. Based on the success of this program, we have now introduced Python-based labs that
span our linear algebra curriculum from the earliest students to graduating seniors. In this talk, I will
address not only the topics in which we teach but also some of the logistics including getting buy-in from
established faculty. I will also focus on how we introduce, motivate, and teach topics typically not seen
until graduate school including the Perron-Frobenius theorem, the spectral mapping theorem, Krylov
subspace methods, and the pseudospectrum.

This is joint work with Mark Hughes (BYU), Jeff Humpherys (University of Utah) and Tyler Jarvis
(BYU) Supported by the National Mathematics Foundation, DUE-TUES Grant Number 1323785.
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Inspiring Linear Algebra Topics Using Image and Data Applications

Heather Moon and Marie Snipes

Washington State University and Kenyon College

In this talk we describe an application-first approach to teaching introductory linear algebra. Students
begin with explorations of two imaging applications, radiography and tomography, and image manipu-
lation with heat diffusion, and then proceed to learn about the tools of linear algebra in the context of
those applications. Our goal is for the context to create a need for the development of linear algebra
concepts and tools. In this talk we showcase a few of the activities we developed for students as part
of the IMAGEMath project and we outline how, together, the two applications inspire most of the key
topics in a first course in linear algebra.

This is joint work with Tom Asaki (WSU). Supported by the National Science Foundation, Grants
DUE-1503929, DUE-1642095, DUE-1503870, and DUE-1503856.
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Pedagogy of linear combination and the levels of thinking about linear
combination

Günhan Caglayan

New Jersey City University

In the course of my teaching of linear algebra along with my research studies on the pedagogy of
linear algebra, I identified the following (not-necessarily exhaustive nor hierarchical) levels of thinking
about the notion of linear combination:

[1] Verifying that one of the vectors in the set S is a linear combination of the other vectors when the
coefficients to form the linear combination are given

[2] Following a procedure in order to write a given vector as a linear combination of the vectors in the
set S when the coefficients to form the linear combination are not given

[3] Declaring a given set S as a spanning set for a vector space

[4] Declaring a given set S as a linearly independent set

[5] Establishing a given set S as a basis for a vector space

[6] Determining whether a given vector is in the column space of the matrix whose columns are made
of the vectors in a given set S

[7] Obtaining the coordinate vector representation of a given vector relative to a certain basis S

[8] Obtaining the matrix representation of a given linear transformation relative to a certain basis S

[9] Obtaining the matrix representation of a given linear transformation relative to bases S and S ′

[10] Obtaining the diagonal matrix representation of a given linear transformation relative to a certain
basis S

[11] Obtaining the matrix representation of a given linear transformation relative to an eigenbasis S

This presentation will focus on these proposed levels of understanding of linear combination in an
attempt to possibly revise / reorder them in a progressive manner from the least to the most sophisticated.
The possibility of including additional levels of linear combination in the aforementioned list will also be
considered.



Fri 24 June, 12:00, O’Flaherty 121 MS-9

Matrix zeros of polynomials

Damjan Kobal

Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000

Ljubljana, EU - Slovenia

The concepts of polynomials and matrices essentially expand and enhance the elementary arithmetic
of numbers. Once introduced, polynomials and matrices open up new interesting mathematical challenges
which extend to new fields of mathematical explorations within university mathematics. We present an
aspect of a rather elementary exploration of polynomials and matrices, which offers a new perspective
and an interesting matrix analog to the concept of a zero of a polynomial. The discussion offers an
opportunity for better comprehension of the fundamental concepts of polynomials and matrices. As an
application we are lead to the meaningful questions of linear algebra and to an easy proof of otherwise
advanced and abstract Cayley - Hamilton theorem.
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MS-10: Numerical linear algebra for
PDEs

Organiser: Niall Madden (NUI Galway)

Theme: This mini-symposium will feature takes on varied topics broadly related to linear and
nonlinear solvers for problems arising from the discretization of PDEs. As such, it will include
elements of both theoretical and applied numerical linear algebra.

21 June 12:00 AC203 Niall Madden p123
A boundary-layer preconditioner for singularly perturbed convection diffusion problems

22 June 10:30 AC201 Patrick E. Farrell p124
A scalable and robust vertex-star relaxation for high-order FEM

22 June 11:00 AC201 Siobhán Correnty p125
Flexible infinite GMRES for parameterized linear systems

22 June 11:30 AC201 Kirk M. Soodhalter p126
Analysis of block GMRES using a ∗-algebra-based approach

23 June 10:30 AC201 John W. Pearson p127
Preconditioned iterative methods for multiple saddle-point systems arising from PDE-constrained opt. . .

23 June 11:00 AC201 Xiao-Chuan Cai p128
A recycling preconditioning method for crack propagation problems

23 June 11:30 AC201 Michal Outrata p129
Preconditioning the Stage Equations of Implicit Runge Kutta Methods

23 June 12:00 AC201 Daniel B. Szyld p130
Provable convergence rate for asynchronous methods via randomize linear algebra

23 June 14:00 AC201 Davide Palitta p131
Matrix equation techniques for certain evolutionary partial differential equations

23 June 14:30 AC201 Conor McCoid p132
Extrapolation methods as nonlinear Krylov methods

23 June 15:00 AC201 V A Kandappan p133
A Domain Decomposition based preconditioner for Discretised Integral equations in two dimensions
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A boundary-layer preconditioner for singularly perturbed convection
diffusion problems

Niall Madden

National University of Ireland, Galway

The numerical analysis of discretizations of singularly perturbed differential equations is an established
sub-discipline within the study of the numerical approximation of solutions to differential equations. The
motivatation stems the wide range of real-world problems whose solutions exhibit boundary and interior
layers, and the challenges posed when trying to solve these problems numerically.

Consequently, much is known about how to accurately and stably discretize such equations in order
to properly resolve the layer structure present in their continuum solutions. However, despite being a key
step in the numerical simulation process, the study of efficient and accurate solution of the associated
linear systems is somewhat neglected (though not entirely, see, e.g., [1, 2, 4]).

In this talk, we discuss problems associated with the application of direct solvers to these discretiza-
tions. We then propose a preconditioning strategy that is tuned to the matrix structure induced by
using layer-adapted meshes for convection-diffusion equations, proving a strong condition-number bound
on the preconditioned system in one spatial dimension, and a weaker bound in two spatial dimensions.
Numerical results confirm the efficiency of the resulting preconditioners in one and two dimensions, with
time-to-solution of less than one second for representative problems on 1024 × 1024 meshes and up to
40× speedup over standard sparse direct solvers.

This talk is based on [3]; see also https://arxiv.org/abs/2108.13468.

This is joint work with Scott P. MacLachlan (Memorial University) and Thái Anh Nhan (Holy Names
University).
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A scalable and robust vertex-star relaxation for high-order FEM

Patrick E. Farrell

University of Oxford

High-order finite element methods (FEM) offer numerous advantages. They are especially attractive
on modern supercomputers, due to their arithmetic intensity and rapid convergence for smooth solutions.
However, all aspects of a code must change at high-order, from the choice of basis functions to matrix-free
assembly strategies and on to postprocessing and visualisation. A particularly important challenge is to
develop preconditioners that operate matrix-free, without ever accessing even the local tensor for a single
cell.

One promising strategy for preconditioners for high-order FEM is the use of p-multigrid. Pavarino
proved that the two-level method with vertex patch relaxation for the high-degree problem and a low-
order coarse space gives a solver that is robust in polynomial degree for symmetric and coercive problems
[1]. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for
each vertex patch, since they are dense.

In this work we introduce a direct solver for separable vertex patch problems that scales to very high
polynomial degree on tensor product cells. The solver constructs a carefully-chosen tensor product basis
that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual
cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal
degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse
as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus
afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial
degree. In turn, this enables the use of fast p-multigrid solvers. In the non-separable case, the method
can be applied as a preconditioner by approximating the problem with a separable surrogate.

We demonstrate the approach by solving the Poisson equation and a H(div)-conforming interior
penalty discretization of linear elasticity in two dimensions at polynomial degree p = 31 and in three
dimensions at p = 15.

This is joint work with Pablo D. Brubeck (Oxford). Supported by a Mathematical Institute depart-
mental scholarship, and the Engineering and Physical Sciences Research Council, grants EP/R029423/1
and EP/W026163/1.
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Flexible infinite GMRES for parameterized linear systems

Siobhán Correnty

KTH Royal Institute of Technology

We seek the numerical solution to the large sparse linear system

A(µ)x(µ) = b, (2)

where µ ∈ C, A(µ) ∈ Cn×n nonsingular, analytic and nonlinear in µ, and b ∈ Cn. Under these assump-
tions, the matrix A(µ) can be expressed locally by an infinite Taylor series expansion centered around
origin, i.e.,

A(µ) =

∞∑
`=0

A`µ
`, A` := A(`)(0)

1

`!
∈ Cn×n. (3)

In our setting, we assume further that the Taylor coefficients in (3) do not vanish after a certain degree,
and many of the derivatives of A(µ) are computationally available. The method proposed here efficiently
approximates the solution to (2) for many values of the parameter µ simultaneously. This novel approach
offers a significant reduction in complexity over the prior work [1].

The nonlinear dependence on the parameter µ in (2) is addressed with a technique called companion
linearization, commonly used in the study of polynomial eigenvalue problems. The arising system, linear
in the parameter µ, is approximated within a flexible right-preconditioned GMRES framework. The
basis matrix for the Krylov subspace is built just once using the infinite Arnoldi method [2], a process
independent of the truncation parameter m. As this process can be carried out in a finite number of
operations, we, in theory, take m→∞ while constructing the basis matrix.

The preconditioner is applied almost exactly when the residual of the outer method is large, and with
decreasing accuracy as the residual is reduced, as proposed in [3]. In practice, the level of accuracy can
be relaxed dramatically without degrading convergence.

We analyze our method in a way which is analogous to the standard convergence theory for the
method GMRES for linear systems. The competitiveness of our method is illustrated with large-scale
problems arising from a finite element discretization of a Helmholtz equation with parameterized material
coefficient.

This is joint work with Elias Jarlebring (KTH Royal Institute of Technology) and Kirk M. Soodhalter
(Trinity College Dublin). This work was funded by The Swedish research council (VR).
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Analysis of block GMRES using a ∗-algebra-based approach

Kirk M. Soodhalter

Trinity College Dublin

We discuss the challenges of extending convergence results of classical Krylov subspace methods to
their block counterparts and propose a new approach to this analysis. Block KSMs such as block GMRES
are generalizations of classical KSMs, and are meant to iteratively solve linear systems with multiple
right-hand sides (a.k.a. a block right-hand side) all-at-once rather than individually. However, this all-
at-once approach has made analysis of these methods more difficult than for classical KSMs because of
the interaction of the different right-hand sides. We have proposed an approach built on interpreting
the coefficient matrix and block right-hand side as being a matrix and vector over a ∗-algebra of square
matrices. This allows us to sequester the interactions between the right-hand sides into the elements
of the ∗-algebra and (in the case of GMRES) extend some classical GMRES convergence results to the
block setting. We then discuss some challenges which remain and some ideas for how to proceed.

This is joint work with Marie Kubíınová from Czech Academy of Sciences, Institute of Geonics,
Ostrava, Czech Republic (formerly)
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Preconditioned iterative methods for multiple saddle-point systems arising
from PDE-constrained optimization

John W. Pearson

University of Edinburgh

Optimization problems subject to PDE constraints form a mathematical tool that can be applied
to a wide range of scientific processes, including fluid flow control, medical imaging, biological and
chemical processes, and many others. These problems involve minimizing some function arising from a
physical objective, while obeying a system of PDEs which describe the process. Of key interest is the
numerical solution of the discretized linear systems arising from such problems, and in this talk we focus
on preconditioned iterative methods for these systems.

In particular, we describe recent advances in the preconditioning of multiple saddle-point systems,
specifically positive definite preconditioners which can be applied within MINRES, which may find consid-
erable utility for solving these optimization problems as well as other applications. We discuss an inexact
active-set method for large-scale nonlinear PDE-constrained optimization problems, coupled with block
diagonal and block triangular preconditioners for multiple saddle-point systems which utilize suitable
approximations for the relevant Schur complements.

Further, we discuss an alternative structure of a preconditioner for multiple saddle-point systems,
which may be applied within the MINRES algorithm and lead to a guaranteed convergence rate, and
often demonstrates superior convergence as opposed to widely-used block diagonal preconditioners.

This is joint work with Andreas Potschka (TU Clausthal), with associated papers available at [1, 2].
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A recycling preconditioning method for crack propagation problems

Xiao-Chuan Cai

University of Macau

In this talk, we discuss a recycling preconditioning method with auxiliary tip subspace for solving
a sequence of highly ill-conditioned linear systems of equations of different sizes arising from elastic
crack propagation problems discretized by an extended finite element method. The preconditioned linear
systems are solved by a Krylov subspace method using a non-trivial initial guess constructed with a
modification of an approximate solution around the crack tips. The strategy accelerates the convergence
remarkably. Numerical experiments demonstrate the efficiency of the proposed algorithm applied to
problems with several types of cracks.

This is a joint work with X. Chen.
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Preconditioning the Stage Equations of Implicit Runge Kutta Methods

Michal Outrata

University of Geneva

When using implicit Runge-Kutta methods for solving parabolic PDEs, solving the stage equations
is often the computational bottleneck, as the dimension of the stage equations

Mk = b

for an s-stage Runge-Kutta method becomes sn where the spatial discretization dimension n can be
very large. Hence the solution process often requires the use of iterative solvers, whose convergence
can be less than satisfactory. Moreover, due to the structure of the stage equations, the matrix M
does not necessarily inherit any of the preferable properties of the spatial operator, making GMRES the
go-to solver and hence there is a need for a preconditioner. Recently in [2] and also [1] a new block
preconditioner was proposed and numerically tested with promising results.

Using spectral analysis and the particular structure of M , we study the properties of this class of
preconditioners, focusing on the eigen properties of the preconditioned system, and we obtain interesting
results for the eigenvalues of the preconditioned system for a general Butcher matrix. In particular, for low
number of stages, i.e., s = 2, 3, we obtain explicit formulas for the eigen properties of the preconditioned
system and for general s we can explain and predict the characteristic features of the spectrum of the
preconditioned system observed in [1]. As the eigenvalues alone are known to not be sufficient to predict
the GMRES convergence behavior in general, we also focus on the eigenvectors, which altogether allows
us to give descriptive bounds of the GMRES convergence behavior for the preconditioned system.

We then numerically optimize the Butcher tableau for the performance of the entire solution process,
rather than only the order of convergence of the Runge-Kutta method. To do so requires to carefully
balance the numerical stability of the Runge-Kutta method, its order of convergence, and also the con-
vergence of the iterative solver for the stage equations. We illustrate our result on test problems with an
advection-diffusion spatial operator and then outline possible generalizations.
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Provable convergence rate for asynchronous methods via randomize linear
algebra

Daniel B. Szyld

Temple University

Asynchronous methods refer to parallel iterative procedures where each process performs its task
without waiting for other processes to be completed, i.e., with whatever information it has locally available
and with no synchronizations with other processes. For the numerical solution of a general partial
differential equation on a domain, Schwarz iterative methods use a decomposition of the domain into
two or more (usually overlapping) subdomains. In essence one is introducing new artificial boundary
conditions Thus each process corresponds to a local solve with boundary conditions from the values in
the neighboring subdomains.

Using this method as a solver, avoids the pitfall of synchronization required by the inner products in
Krylov subspace methods. A scalable method results with either optimized Schwarz or when a coarse grid
is added. Numerical results are presented on large three-dimensional problems illustrating the efficiency
of asynchronous parallel implementations.

Most theorems show convergence of the asynchronous methods, but not a rate of convergence. In
this talk, using the concepts of randomized linear algebra, we present provable convergence rate for the
methods for a class of nonsymmetric linear systems.
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Matrix equation techniques for certain evolutionary partial differential
equations

Davide Palitta

Dipartimento di Matematica and AM2 , Alma Mater Studiorum - Universita di Bologna, ‘ Piazza di Porta S.

Donato, 5, I-40127 Bologna, Italy

In this talk we show how the linear system stemming from the all-at-once approach for certain
evolutionary partial differential equations (PDEs) can be recast in terms of a Sylvester matrix equation
which naturally encodes the separability of the time and space derivatives.

Combining appropriate projection techniques for the space operator together with a full exploitation
of the structure of the discrete time derivative, we are able to efficiently solve problems with a tremendous
number of degrees of freedom while maintaining a low storage demand in the solution process.

Such a scheme can be easily adapted to solve many different time-dependent PDEs and several
numerical results are shown to illustrate the potential of our novel approach.
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Extrapolation methods as nonlinear Krylov methods

Conor McCoid

University of Geneva

Krylov methods are commonplace for solving of linear problems. Their use for nonlinear problems
requires generalizing them. In linear examples some extrapolation methods have been shown to be equiv-
alent to Krylov subspace methods. Since extrapolation methods can be applied to nonlinear problems,
we can view these methods as nonlinear Krylov methods. To show the broad class of equivalences be-
tween these methods and others, we build each from their ancestral root-finding method, the multisecant
equations, which are an extension of the secant equations to higher dimensions.

This work was completed under the supervision of Prof. Martin J. Gander (Geneva). Supported by
the Swiss National Science Foundation.
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A Domain Decomposition based preconditioner for Discretised Integral
equations in two dimensions

V A Kandappan

Indian Institute of Technology, Madras

In this talk, we present a new preconditioner for dense linear systems arising from discretised integral
equations in two dimensions. The developed preconditioner combines the traditional domain decomposi-
tion technique with hierarchical matrix representations, in particular the HODLR2D [1]. We apply this
preconditioner to improve the conditioning of the system and thereby accelerate the convergence of the
iterative solver. We present the preconditioner’s performance through numerical experiments on dense
linear systems from discretised integral equations in two dimensions. We also compare the performance
of the developed new preconditioner with a block diagonal preconditioner.

This is joint work with Sivaram Ambikasaran (Indian Institute of Technology Madras)
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MS-11: The Research and Legacy of
Richard A. Brualdi

Organisers: Adam Berliner (St Olaf College), Louis Deaett (Quinnipiac University)
and Seth Meyer (St Norbert College)

Theme: Richard Brualdi’s career has spanned (no pun intended) nearly six decades. He is not
only a prolific researcher and contributor to the linear algebra, graph theory and combinatorics
communities, but he also advised 37 Ph.D. students, the most ever for a mathematician at the
University of Wisconsin – Madison. This mini-symposium features topics related to and/or inspired
by Richard’s impressive work.
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On the spectrum of graduate research projects with Richard Brualdi
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Pattern-Avoiding Permutation Matrices



Tue 21 June, 14:00, O’Flaherty 135 MS-11

Richard, Matrices and Polyhedra

Geir Dahl

University of Oslo

It is a pleasure to participate in this session where we honor the work of Richard (A. Brualdi). Richard
is, and has been, a central person in our community, and his research in combinatorics and matrix theory
is highly acknowledged. Personally I have had the pleasure of knowing and collaborating with Richard
for more than 20 years. In this talk I will briefly mention a few topics that have been central in Richard’s
research, and how they might be connected. The talk will be informal, non-technical and focus on Richard
and his mathematics, and our collaboration.
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Loopy 2-graphs

Seth A. Meyer

St. Norbert College

Given a non-increasing sequence D = (d1, . . . , dn) of non-negative integers, we can ask if there exists a
symmetric, zero trace, (0,1)-matrix which has row sums equal to the corresponding entries in D. This is
equivalent to asking whether or not a simple graph exists with this vertex degree sequence prescribed by
D, and can be determined by using the well-known Erdös-Gallai Theorem. When the zero trace condition
is relaxed, the natural perspective in the matrix formulation is to consider symmetric (0,1)-matrices with
unrestricted trace and prescribed row sums, so that diagonal entries which are 1 – usually thought of as
loops in the graph – count 1 towards the vertex degree. However, loops are often considered to contribute
2 towards the degree of the vertex when working in a graph theory context. This is slightly awkward
in the matrix, as now off-diagonal entries can be 0 or 1, but diagonal entries can be 0 or 2. However,
symmetric matrices with prescribed row sums, zero trace, and entries in {0, 1, 2} have been studied and
the corresponding existence result to Erdös-Gallai was given by Chungphasian. These can be thought of
as graphs without loops where multiedges of multiplicity up to 2 are allowed. Now loops which count 2
are more natural, and we get the class of symmetric matrices with entries in {0, 1, 2} but which cannot
have ‘1’s on the main diagonal. This talk will explore this class of matrices and present some preliminary
results, including necessary and sufficient conditions on the degree sequence for the existence of a matrix
in this class and an algorithm which constructs such matrices.

This is joint work with Richard Brualdi (University of Wisconsin).
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On the independence of near-vector spaces and their matroids

Karin-Therese Howell, Nancy Ann Neudauer

Stellenbosch University & Pacific University

In Lineare Algebra über Fastkörpern, the concept of a vector space, that is, a linear space, is generalized
to a structure comprising a bit more non-linearity, the so-called near-vector space by André. Every
vector space is a near-vector space, and there are two types of linear independence when one constructs
near-vector spaces from finite Dickson nearfields. At the Workshop for African Women in Discrete
Mathematics in January 2018, Howell asked if anyone thought her work in near-vector spaces has a
connection to matroids.

We share some results of this investigation, introducing the matroids of the near-vector spaces as
defined by André, where the lack of linearity is as a result of one distributive law not holding in general.
André orginally defined independence inside the quasi-kernel, the generating set of a near-vector space.
Once we move outside the quasi-kernel, it quickly becomes apparent that some strange things can happen,
very unlike what we know for vector spaces, as we will see.

We characterise the independence of near-vector spaces constructed using copies of finite fields. We
show that for regular near-vector spaces of this nature, independence is equivalent to the notion of
independence in the associated vector space. A highlight is proving that for the construction where the
number of maximal regular subspaces coincides with the dimension, any element outside of the quasi-
kernel can generate the entire space. We completely characterise independence for this space. We define
matroids for finite field constructions and those using copies of a proper finite near-field.

This joint work is supported by the National Research Fund (South Africa) (Grant number: 96056),
a Simons Foundation Mathematics Collaboration grant, the Thomas and Joyce Holce endowed professor-
ship, and the African Institute of Mathematical Sciences (AIMS South Africa) Research Centre.
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Richard’s mathematical legacy that influenced Korea

Gi-Sang Cheon

Sungkyunkwan University, Suwon 16419, South Korea

The field of combinatorics and matrix theory in Korea did not become so active until Richard’s Ph.D.
students returned to Korea in mid-1980 from Wisconsin. Afterwards, many people have become interested
in the interaction between combinatorics and matrix theory due to their active research activities and
education at graduate school. As a result, combinatorial matrix theory has become one of the active
research fields in Korea. Moreover, the International Conference on Combinatorial Matrix Theory (Co-
Chair: Richard Brualdi, Suk-Geun Hwang) was first held in Pohang on January 14-17, 2002 with the
support of the National Research Foundation of Korea. A large number of prominent scholars in this field
were invited and the event was held successfully with about 100 participants. Since then, the research
field has become more diverse, and the 19th ILAS Meeting was held in Seoul on August 6-9, 2014 as a
satellite conference for ICM 2014. The purpose of the meeting was to promote research interaction in
all aspects of linear algebra and its applications. In addition, the International Conference on Matrix
theory and Applications to Combinatorics, Optimization, and Data analysis was held in Jeju on May
23-27, 2019. Richard gladly accepted the invitation to speak at the plenary session, and the meeting was
even more successful.

We are always grateful to Richard for his direct and indirect assistance in these research activities in
Korea. In this talk, we look back on how he influenced the research and education of combinatorics and
matrix theory in Korea.
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On the spectrum of graduate research projects with Richard Brualdi

Michael William Schroeder (#35)

Marshall University

As a graduate student, I was a coauthor with Richard and his other graduate students at the time on
six different papers. While these publications were all in matrix theory, their topics and methods were
largely distinct, both from each other and each graduate student’s dissertation. I attribute my modest
success as a collaborative researcher from these rewarding experiences.

In this talk, I give brief mention to each of these papers, as well as some further results that have
stemmed from these publications. This is joint work with a variety of Brualdites, particularly #33, #34,
#36, #37 and, of course, #0.
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Permanents of t-triangular (0, 1)-matrices

John Goldwasser

West Virginia University

Let A be a square matrix and t a positive integer. We say A is t-triangular if there exist permutation
matrices P and Q such that PAQ = B = [bij ] = 0 whenever j ≥ i+ t. We ask for which positive integers
the following statement is true: If A is any square matrix with nonnegative integral entries such that
0 < perA < (t + 1)!, then A is t-triangular. If t = 1, the statement reduces to a theorem of Brualdi. I
will show the statement is true for t = 2 and 3, but false for t = 6.
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Determinants:Digraphs::Pfaffians:Matchings

Jennifer J. Quinn

University of Washington Tacoma

Determinants have a beautiful combinatorial interpretation as non-intersecting path systems on
acyclic digraphs due to Lindström, Gessel, and Viennot[1, 2] that lead to intuitive proofs of determi-
nant identities. Since Pfaffians, defined on skew-symmetric matrices, are essentially the square root of
the determinant, can the same be said for Pfaffian identities? This talk explores combinatorial inter-
pretations of Pfaffians, determinants, and the connections between them. It showcases sign reversing
involutions, a powerful and often underappreciated combinatorial method.

This is joint work with Naiomi Cameron (Spelman College).
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Pattern-Avoiding Permutation Matrices

Richard A. Brualdi

University of Wisconsin - Madison

Permutation matrices appear throughout combinatorial matrix theory. Permutation patterns form a
rich part of the combinatorial theory of permutations. In [1] we introduced a new saturation function
for m × n (0, 1)-matrices: A is saturating for a (0, 1)-pattern P if A does not contain the pattern P (A
avoids P ) and A is maximal with respect to this property (no 0 can be changed to a 1). We proved,
among other things, that the saturation function for the pattern P = Ik (so 12 · · · k as a permutation)
equals (k− 1)(m+n− (k− 1)), and that if A has fewer 1’s, some 0 of A can be replaced with a 1 so that
A still avoids Ik. A similar result is obtained for the permutation pattern 312 (the only other essentially
different permutation pattern with k = 3).

In [2] we are motivated by some old work of Fulkerson that has some connection with the famous
Frobenius-Kőnig theorem, namely blocking permutation matrices in minimal and minimum ways. In the
F-K situation, every r × s submatrix of an n × n (0, 1)-matrix with r + s = n + 1 blocks all n × n
permutation matrices; in particular every row and column, so n positions. For patterns of size k > 3, we
show that the only blockers of size n are the rows and columns (so, in fact they block all n-permutations).
If k = 3, a minimal blocker must be of size n, but need not be a row or column.

In [3] we investigate continuous analogues of some of these investigations, namely convex hulls of
pattern-avoiding permutation matrices, a generalization of the polytopes of doubly stochastic matrices.

This talk is based on continuing joint work with Lei Cao of Nova Southeastern University, Florida
[1, 2, 3].
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Theme: Matrix positivity, or positive semidefiniteness, is one of the most wide-reaching concepts
in mathematics, old and new. Positivity of a matrix is as natural as positivity of mass in statics
or positivity of a probability distribution. It is a notion which has attracted the attention of many
great minds. Yet, after at least two centuries of research, positive matrices still hide enigmas
and raise challenges for the working mathematician. The vitality of matrix positivity comes from
its breadth, having many theoretical facets and also deep links to mathematical modelling. The
speakers in this minisymposium work on various aspects of this subject, both pure and applied.
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Riordan arrays: structure and positivity

Paul Barry

SETU, Ireland

Riordan arrays arise from the matrix representation of the Riordan group, whose elements are pairs of
formal power series. These arrays thus have an algebraic structure and a matrix structure. We examine
aspects of these structures, and show how they are inter-linked, before turning to look at positivity results
for Riordan arrays.
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Positivity preservers forbidden to operate on diagonal blocks

Prateek Kumar Vishwakarma

University of Regina, Canada

The question of which functions acting entrywise preserve positive semidefiniteness has a long history,
beginning with the Schur product theorem [4], which implies that absolutely monotonic functions (i.e.,
power series with nonnegative coefficients) preserve positivity on matrices of all dimensions. A famous
result of Schoenberg and of Rudin [2, 3] shows the converse: there are no other such functions.

Motivated by modern applications, Guillot and Rajaratnam [1] classified the entrywise positivity
preservers in all dimensions, which act only on the off-diagonal entries. These two results are at “opposite
ends”, and in both cases the preservers have to be absolutely monotonic.

We complete in [5] the classification of positivity preservers that act entrywise except on specified
“diagonal/principal blocks”, in every case other than the two above. (In fact we achieve this in a more
general framework.) This yields the first examples of dimension-free entrywise positivity preservers -
with certain forbidden principal blocks - that are not absolutely monotonic.
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An Atomic Viewpoint of the Totally Positive Completion Problem

Daniel Carter

Princeton University

We present two complementary techniques called catalysis and inhibition which allow one to determine
if a given pattern is TP completable or TP non-completable, respectively. Empirically, these techniques
require considering only one unspecified entry at a time in a vast majority of cases, which makes these
techniques ripe for automation and a powerful framework for future work in the TP completion problem.
With small modifications, these techniques are also applicable to the TN completion problem.

We provide two major applications. First, we characterize all 4-by-4 patterns by completability. There
are a total of 78 new obstructions of this size, six times as many as the 3-by-n case for all n combined.
Second, we provide a characterization of the so-called 1-variable obstructions in the TN case, which
includes as a corollary a characterization of patterns with a single unspecified entry. This also provides a
novel partial result towards proving the conjecture that all TN-completable patterns are TP-completable.

This is joint work with Charles Johnson (College of William and Mary). Supported by the National
Mathematics Foundation, Grant DMS-0751964.
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Maximizing the number of positive eigenvalues of an LCM matrix

Mika Mattila

Tampere University

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers with xi ≤ xj ⇒ i ≤ j. The GCD matrix
(S) of the set S is the n×n matrix with gcd(xi, xj) as its ij entry. Similarly, the LCM matrix [S] of the
set S has lcm(xi, xj) as its ij entry. Both of these matrices were originally defined by H. J. S. Smith in
his seminal paper from the year 1876.

During the last 30 years both GCD and LCM matrices (as well as their various generalizations)
have been investigated extensively in the literature. Although the entries of both of the matrices are all
positive integers, the properties of these matrix types differ greatly from each other. For example, the
GCD matrix (S) is positive definite for any set S whereas every nontrivial LCM matrix [S] is indefinite
and may be even singular. Still, the number of positive and negative eigenvalues of the matrix [S] varies
a lot depending on the actual elements of the set S. This gives raise to a new question: how to construct
an LCM matrix that has as many positive eigenvalues as possible?

It this talk we shall focus solely on the cases when the set S is GCD closed, because in this situation
the poset-theoretic semilattice structure of (S, |) often alone determines the inertia of the LCM matrix [S]
completely. This may be a bit surprising, since one could expect the exact values of the elements xi ∈ S
to play a bigger role in this. Nevertheless, our method makes it possible to give examples of matrices [S]
for which only a ”small portion” of the eigenvalues are negative.

The presentation is based on the content of the Section 5 of the article [1].

This is joint work with Pentti Haukkanen (Tampere University) and Jori Mäntysalo (Tampere Uni-
versity).
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Completing an Operator Matrix and the Free Joint Numerical Radius

Hugo J. Woerdeman

Drexel University

Ando’s [1] classical characterization of the unit ball in the numerical radius norm was generalized by
Farenick, Kavruk and Paulsen [2] using the free joint numerical radius of a tuple of Hilbert space operators
(X1, . . . , Xm). In particular, the characterization leads to a positive definite completion problem. In this
paper we study various aspects of Ando’s result in this generalized setting. Among other things, this
leads to the study of finding a positive definite solution L to the equation

L = I +
m∑
j=1

[(
L

1
2X∗jLXjL

1
2 +

1

4
I

) 1
2

+

(
L

1
2XjLX

∗
jL

1
2 +

1

4
I

) 1
2

]
,

which may be viewed as a fixed point equation. Once such a fixed point is identified, the desired positive
definite matrix completion is easily identified. Along the way we also derive new formulas for the joint
numerical radius when the tuple consists of generalized permutations. Finally, we present some open
problems.

This is joint work with Kennett L. Dela Rosa (University of the Philippines Diliman). Supported by
Simons Foundation grant 355645 and National Science Foundation grant DMS 2000037
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Coefficientwise total positivity of some matrices defined by linear
recurrences

Tomack Gilmore

Lancaster University

In this talk I will present some recent results and conjectures [2] concerning the coefficientwise total
positivity of a lower-triangular matrix (denoted T (a, c, d, e, f, g)) with polynomial entries in six indeter-
minates that satisfy a three-term linear recurrence. The matrix T (a, c, d, e, f, g) is of particular interest
since it includes, as special cases, a number of combinatorially significant integer matrices, two of which
are: the Eulerian triangle [3, A008292] (the matrix whose (n, k)-entry counts permutations of [n] with
k descents); and the reversed Stirling subset triangle [3, A008278] (the matrix whose (n, k)-entry counts
partitions of the set [n] = {1, 2, . . . , n} into n− k non-empty blocks). The former was conjectured to be
totally positive over a quarter of a century ago by Brenti [1] and motivated our subsequent research on
this topic, while the latter can be shown to be totally positive by specialising our results.

This is joint work with Xi Chen, Bishal Deb, Alexander Dyachenko, and Alan D. Sokal, and was
supported in part by the U.K. Engineering and Physical Sciences Research Council grant EP/N025636/1,
a fellowship from the China Scholarship Council, and a fellowship from the Deutsche Forschungsgemein-
schaft.
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Free functions preserving certain partial orders of operators

Miklós Pálfia

Corvinus University of Budapest and University of Szeged

Recently free analysis has been a very active topic of study in operator and function theory. In
particular free functions that preserve partial orders of operators have been studied by a number of
authors, in connection to Loewner’s theorem. Also operator concave free functions naturally get into the
picture as we study the positive definite order preserving free functions. We will go through recent results
of the field, and we will cover some recent works on analytic lifts and extension of operator monotone and
concave functions to the domain matrix convex hull of their domains. This is related to some conjectures
in the field, for instance McCarthy’s conjecture. If time permits, we will cover another recent joint work
with M. Gaál solving Blecher’s problem on characterizing real positive definite order preserving functions.
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MS-13: Rigidity and matrix completion

Organisers: James Cruickshank (NUI Galway) and Derek Kitson (MIC Thurles)

Theme: This minisymposium will focus on geometric rigidity theory and its connections with low
rank matrix completion problems.

20 June 11:00 AC204 Derek Kitson p152
Graph rigidity in cylindrical spaces

20 June 11:30 AC204 Signe Lundqvist p153
When is a rod configuration infinitesimally rigid?

20 June 12:00 AC204 John Hewetson p154
Global Rigidity of Frameworks in Non-Euclidean Normed Planes

23 June 14:00 AC204 James Cruickshank p155
Global Rigidity for Line Constrained Frameworks

23 June 14:30 AC204 Shin-ichi Tanigawa p156
A Characterization of Graphs of Super Stable Tensegrities

23 June 15:00 AC204 Sean Dewar p157
The number of realisations of a minimally rigid graph in various geometries
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Graph rigidity in cylindrical spaces

Derek Kitson

Mary Immaculate College, Thurles

We will report on recent progress in characterising minimally rigid graphs for normed spaces of
dimension ≥ 3. In particular, we will present combinatorial characterisations of minimal rigidity for the

cylindrical spaces (R3, ‖ · ‖p,∞) where ‖(x, y, z)‖p,∞ = max
{

(|x|p + |y|p)
1
p , |z|

}
and p ∈ (1,∞). As a

corollary, we will show that doubly braced sphere triangulations are minimally rigid graphs in the case
p = 2.

This is joint work with Sean Dewar (JKU, Linz).
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When is a rod configuration infinitesimally rigid?

Signe Lundqvist

Ume̊a University

A rod configuration is a realisation of a hypergraph as points and straight lines in the plane, where
the lines behave as rigid bodies. Tay and Whiteley conjectured that the infinitesimal rigidity of rod
configurations realising 2-regular hypergraphs depends only on the generic rigidity of body-and-joint
frameworks realising the same hypergraph [3]. This conjecture is known as the molecular conjecture
because of its applications to molecular chemistry. Jackson and Jordán proved the molecular conjecture
in the plane, and Katoh and Tanigawa proved it in arbitrary dimension [1, 2]. Earlier, Whiteley proved
a version of the molecular conjecture for hypergraphs of arbitrary that can be realised as independent
body-and-joint frameworks in the plane [4].

In this talk, we will see that the infinitesimal rigidity of a sufficiently generic rod configuration realising
an arbitrary hypergraph depends only on the generic rigidity of an associated graph, which we call a cone
graph. This can be seen as a generalisation of Whiteley’s version of the molecular conjecture to arbitrary
hypergraphs.

This is joint work with Klara Stokes (Ume̊a University) and Lars-Daniel Öhman (Ume̊a University).
Supported by the Knut and Alice Wallenberg Foundation, Grant 2020.0001 and 2020.0007.
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Global Rigidity of Frameworks in Non-Euclidean Normed Planes

John Hewetson

Lancaster University

A framework (G, p) is an ordered pair where G is a graph and p maps the vertices of G to some normed
space. In the 1990s, Hendrickson [1] gave necessary conditions for a generic framework to be globally
rigid in d-dimensional Euclidean space. Connelly proved that Hendrickson’s conditions are insufficient
when d ≥ 3, but in 2005 they were shown to be sufficient when d = 2. This result combined work by
Connelly [2] with a construction of a family of graphs by Jackson and Jordán [3]. More recently, attention
has turned to considering frameworks realised in non-Euclidean normed spaces. In this talk we present
our characterisation of globally rigid frameworks in analytic (non-Euclidean) normed planes. As in the
Euclidean setting, our proof makes use of a relationship between global rigidity of a given framework and
the connectivity of a matroid defined on the underlying graph.

This is joint work with Sean Dewar (RICAM) and Tony Nixon (Lancaster).
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Global Rigidity for Line Constrained Frameworks

James Cruickshank

NUI Galway

We will consider the rigidity properties of bar-joint frameworks whose vertices are constrained to lie
on a given set of lines in Rd. In particular we will give a necessary and sufficient conditions for a graph
to be generically globally rigid in this context, extending previous results of Guler, Jackson and Nixon.

This is joint work with Fatemeh Mohammadi (Ghent), Harshit Motwani (Ghent), Tony Nixon (Lan-
caster) and Shin-ichi Tanigawa (Tokyo)
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A Characterization of Graphs of Super Stable Tensegrities

Shin-ichi Tanigawa

University of Tokyo

Tensegrities are pin-jointed structures made from struts and cables. Super stability introduced by
Connelly [1] is one of the widely used sufficient conditions for the (global) rigidity of tensegrities. In this
talk, I will give a characterization of graphs that can be realized as super stable tensegrities.

This is joint work with Ryoshun Oba (University of Tokyo). Supported by JST PRESTO Grant
Number JPMJPR2126.
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The number of realisations of a minimally rigid graph in various geometries

Sean Dewar

Johann Radon Institute (RICAM)

Given a minimally d-rigid graph G, we define cd(G) to be the number of d-dimensional realisations
of G, and c∗d(G) to be the number of realisations of G on the d-dimensional sphere. It was computed
by Gallet, Grasegger and Schicho that for any Laman graph G with 10 vertices or less, the inequality
c2(G) ≤ c∗2(G) holds; furthermore, this inequality is strict for some, but not all, Laman graphs. In recent
ongoing research, we have proven that cd(G) ≤ c∗d(G) holds for all minimally d-rigid graphs. We obtain
this result by first proving that c∗d(G) = cd+1(G ∗ o), where G ∗ o is the cone of a minimally d-rigid graph
G.

This is joint work with Georg Grasegger (Johannes Kepler University). Supported by the Austrian
Science Fund (FWF): P31888.
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MS-14: History of Linear Algebra

Organisers: Kirk Soodhalter and Jörg Liesen

Theme: “The evolution of science does not occur in steady growth but in fitful jumps, initiated
by sudden flashes of ingenuity which are not different from the manner of artistic creation.” (C.
Lanczos)
This minisymposium will be devoted to some historical flashes of ingenuity that led to fundamental
developments in Linear Algebra and its applications, and it will remember some of the founders
of the field and their accomplishments.

21 June 14:00 Anderson Rachel Quinlan p159
The invention of character theory (via linear algebra)

21 June 14:30 Anderson Zdeněk Strakoš p160
Seventieth anniversary of the conjugate gradient method and what do old papers reveal about our pre. . .

21 June 15:00 Anderson Claude Brezinski p161
The life and the work of André Louis Cholesky

21 June 15:30 Anderson Michela Redivo-Zaglia p162
P. Stein and R.L. Rosenberg



Tue 21 June, 14:00, Anderson 159 MS-14

The invention of character theory (via linear algebra)

Rachel Quinlan

National University of Ireland, Galway

This talk will relate some of the story of the invention of character theory of finite groups, by Dedekind
and Frobenius in 1896. Characters are now understood as trace functions of representations, which are
homomorphisms from an abstract group to a complex general linear group. They originated however from
the efforts of Dedekind to factorize the group determinant, a homogeneous polynomial in n variables,
where n is the order of the group. By applying very elementary ideas from matrix theory, Dedekind
and Frobenius were able to establish most of the fundamental properties of irreducible characters of
finite groups. Their ingenious approach is concealed (for good reasons admittedly) in most modern
introductions to representation theory and character theory.
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Seventieth anniversary of the conjugate gradient method and what do old
papers reveal about our presence

Zdeněk Strakoš

Charles University, Prague

In his lecture Why Mathematics? delivered at the Annual Meeting of the Irish Mathematics Associ-
ation on October 31, 1966, Cornelius Lanczos said: ”The naive optimist who believes in progress and is
convinced that today is better than yesterday and in ten years time the world will be infinitely better off
than it is today, will come to the conclusion that mathematics (and more generally all the exact sciences)
started only about twenty years ago, while the predecessors must have walked around in a kind of limbo
of half-digested and improperly conceived ideas.”

This year marks the seventieth anniversary of the paper by Hestenes and Stiefel, which comprehen-
sively described the conjugate gradient method (CG) considered among the most important algorithmic
developments of the 20th century. This paper should be studied together with the three closely related
papers by Lanczos published within the period 1950-53. It is worth to notice, e.g., also the papers by
Karush and Hayes, published in 1952 and 1954, respectively, as well as a couple of other works of several
other authors from the same period.

This contribution will examine how the knowledge present in these seminal papers is reflected in the
contemporary literature on CG, and what does it show on the status of the current understanding of the
deeply rooted mathematical ideas so beautifully presented many decades ago.



Tue 21 June, 15:00, Anderson 161 MS-14

The life and the work of André Louis Cholesky

Claude Brezinski

Université de Lille

In this talk, I first describe the life of André Louis Choleky (1873-1918) who was a French army officer
specialised in topography and cartography. Then, I analyse his scientific work. In particular, I discuss
his well known method for solving a system of linear equations with a symmetric positive definite matrix.
I show how this method was forgotten and then came back to light. The other works of Cholesky will
also be mentioned.
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P. Stein and R.L. Rosenberg

Michela Redivo-Zaglia

University of Padua

In this talk, after reminding the well known theorem of this two researchers, I will speak about their
life and works. For the first author it was pretty easy to find information, but for the second one, it was
a real puzzle to reconstruct his life. These biographies are included in a forthcoming joint book, written
with Claude Brezinski and Gérard Meurant [1] where authors invite the readers to a journey in the
history of numerical linear algebra. The second part of the book contains 78 biographies of researchers
who contributed significantly to the field of numerical linear algebra, and in the Bibliography there are
3344 references.
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MS-15: Companion Matrix Forms

Organisers: Kevin Vander Meulen (Redeemer University) and Fernando de Terán
(Universidad Carlos III de Madrid)

Theme: The Frobenius companion matrix is a well-established classical matrix structure, which
has been extensively used over the years, for instance, in the polynomial root-finding problem.
Recently there is a renewed interest in companion matrix forms, in part due to the discovery of
other companion matrices by Fiedler, and to the interest, in the framework of Nonlinear Eigenvalue
Problems, of looking for new classes of linearizations having better numerical features.
This minisymposium will gather researchers interested in the structures of companion matrices
and companion linearizations of matrix polynomials and rational matrices.

22 June 10:30 D’Arcy Thompson Javier Perez p164
Error bounds for matrix polynomial eigenvectors

22 June 11:00 D’Arcy Thompson Andrii Dmytryshyn p165
Recovering a perturbation of a matrix polynomial from a perturbation of its companion matrix

22 June 11:30 D’Arcy Thompson Aaron Melman p166
Applications of companion forms to eigenvalue bounds and scalar polynomials

23 June 10:30 D’Arcy Thompson Luca Gemignani p167
Comparison Theorems for Splittings of M-matrices in block Hessenberg Form

23 June 11:00 D’Arcy Thompson Kevin Vander Meulen p168
Using the Hessenberg Form of a Sparse Companion Matrix

23 June 11:30 D’Arcy Thompson Gianna M. Del Corso p169
Orthogonal iterations on companion-like pencils

23 June 12:00 D’Arcy Thompson Robert M. Corless p170
Algebraic Companions

23 June 14:00 Anderson Vanni Noferini p171
DL(P ), Bézoutians, and the eigenvalue exclusion theorem for singular matrix polynomial. . .

23 June 14:30 Anderson Maŕıa C. Quintana p172
Linearizations of rational matrices from general representations

23 June 15:00 Anderson A. Satyanarayana Reddy p173
Primitive Companion Matrices

24 June 10:30 D’Arcy Thompson Froilán Dopico p174
Linearizations of matrix polynomials via Rosenbrock polynomial system matrices

24 June 11:00 D’Arcy Thompson Louis Deaett p175
Non-sparse companion matrices

24 June 11:30 D’Arcy Thompson Roberto Canogar p176
Non-sparse Companion Hessenberg Matrices

24 June 12:00 D’Arcy Thompson Fernando De Terán p177
Companion pencils for scalar (and matrix) polynomials in the monomial basis
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Error bounds for matrix polynomial eigenvectors

Javier Perez

Department of Mathematical Sciences, University of Montana, USA

The standard approach for computing the eigenvalues and the eigenvectors of a matrix polynomial
P (λ) = λdAd + λd−1Ad−1 + · · ·+ λA1 +A0 starts by embedding the matrix coefficients Ai into a matrix
pencil λL1 + L0, known as linearization. In this talk, we present novel error bounds for the computed
eigenvectors of a matrix polynomial P (λ) when the eigenvectors of the polynomial have been recovered
from those of a linearization of P (λ). We show that, under some linearization-specific conditions, the
recovered eigenvectors are almost the exact eigenvectors of a nearby matrix polynomial. These new error
bounds can be applied to most of the linearizations introduced in the last decade (companion linearization,
L1 and L2 linearizations, DL linearizations, Fiedler linearizations, block Kronecker linearizations, etc).
Moreover, we use our theory to show for the first time that the two-linearizations strategy for solving
quadratic eigenvalue problems introduced by L. Zeng and Y. Su [1] is backward stable. The theory is
illustrated by numerical examples.
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Recovering a perturbation of a matrix polynomial from a perturbation of its
companion matrix

Andrii Dmytryshyn

Örebro University

A number of theoretical and computational problems for matrix polynomials are solved by passing
to linearizations. Therefore a perturbation theory results for the linearizations need to be related back
to matrix polynomials. We present an algorithm that finds which perturbation of matrix coefficients of
a matrix polynomial corresponds to a given perturbation its companion matrix [1].

Supported by the Swedish Research Council, Project 2021-05393.
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Applications of companion forms to eigenvalue bounds and scalar polynomials

Aaron Melman

Santa Clara University

We present a simple way to derive companion forms of matrix polynomials, which are lower order
matrix polynomials with the same eigenvalues (so-called ”`-ifications”) as the given matrix polynomial,
and show how they can be used to produce eigenvalue bounds. These bounds, which also include non-
standard directional ones, can be substantially less computationally demanding when using higher degree
companion forms, as opposed to classical linearizations (companion forms of degree one).

As an application to scalar polynomials, we show how companion forms provide a convenient way for
the derivation of a polynomial whose (unknown) zeros are powers of those of a given polynomial.
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Comparison Theorems for Splittings of M-matrices in block Hessenberg Form

Luca Gemignani

University of Pisa

In this talk we consider the solution of M -matrix linear systems in block Hessenberg form, and we
show new comparison results among matrix splittings that hold for this special structure. In particular,
we prove that for a lower-Hessenberg M-matrix ρ(PGS) ≥ ρ(PS) ≥ ρ(PAGS), where ρ(A) denotes the
spectral radius of A and PGS , PS , PAGS are the iteration matrices of the Gauss–Seidel, staircase, and
anti-Gauss–Seidel method. This is a result that does not seem to follow from classical comparison
results, as these splittings are not directly comparable. Also, it fosters the use of stair partitionings for
solving Hessenberg linear systems in parallel.

This is joint work with Federico Poloni (Pisa).
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Using the Hessenberg Form of a Sparse Companion Matrix

Kevin Vander Meulen

Redeemer University

A companion matrix can be described as a template for obtaining a matrix with a specified charac-
teristic polynomial. The Frobenius companion matrix is the classic example of such a template. More
recently, a broader class of companion matrices were described by Fiedler via a product construction.
The Fiedler matrices belong to a larger class of sparse companion matrices that can be characterized by
a Hessenberg form. The Hessenberg form enables the calculation of bounds for roots of polynomials. The
form also enables the calculation of condition numbers of classes of companion matrices.
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Orthogonal iterations on companion-like pencils

Gianna M. Del Corso

University of Pisa

We present a class of fast subspace algorithms based on orthogonal iterations for structured matri-
ces/pencils that can be expressed as small rank perturbations of unitary matrices. The representation
of the matrix by means of a new data-sparse factorization –named LFR factorization– using orthogonal
Hessenberg matrices is at the core of these algorithms. The factorization can be computed at the cost of
O(nk2) arithmetic operations, where n and k are the sizes of the matrix and the small rank perturbation,
respectively. At the same cost from the LFR format we can easily obtain suitable QR and RQ factor-
izations where the orthogonal factor Q is a product of orthogonal Hessenberg matrices and the upper
triangular factor R is again given into the LFR format. The orthogonal iteration reduces to a hopping
game where Givens plane rotations are moved from one side to the other side of these two factors. The
resulting new algorithms approximate an invariant subspace of size s associated with a set of s leading
or trailing eigenvalues using only O(nks) operations per iteration. The number of iterations required to
reach an invariant subspace depends linearly on the ratio |λs+1|/|λs|. Numerical experiments confirm the
effectiveness of our adaptations.

This is joint work with Roberto Bevilacqua and Luca Gemignani (University of Pisa).
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Algebraic Companions

Robert M. Corless

University of Western Ontario

Given companion matrix pencils for polynomials a(x) and b(x), and generalized standard triples for
them, one can construct a new companion pencil for c(x) = xa(x)b(x) + d using the smaller pencils as
building blocks. Similarly, algebraic linearizations can be built out of smaller linearizations for matrix
polynomials.

Working backwards from c(x) is harder, but may be of interest in a search for greater numerical
stability. We already know of recursive constructions for the companions for the Mandelbrot polynomial
where the eigenvalue condition number is exponentially smaller than that of the Frobenius companion
matrix. Are there other examples where this approach can be so successful? And what role does “minimal
height” play, here?

I gratefully acknowledge the help of Eunice Y.S. Chan, Piers W. Lawrence, and Steven E. Thornton.
Discussions with Neil J. Calkin, Laureano Gonzalez-Vega, Nick Higham, J. Rafael Sendra, and Juana
Sendra were also very useful. Partially supported by NSERC grant RGPIN-2020-06438, and partially
supported by the grant PID2020-113192GB-I00 (Mathematical Visualization: Foundations, Algorithms
and Applications) from the Spanish MICINN.
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DL(P ), Bézoutians, and the eigenvalue exclusion theorem for singular matrix
polynomials

Vanni Noferini

Aalto University

Let P (λ) be a polynomial matrix. In [3], the vector space DL(P ) of block symmetric potential
linearization was defined. In DL(P ), each pencil is associated with a scalar polynomial v(λ), called either
v-polynomial [3] or ansatz polynomial [4], whose degree is at most the degree of P minus 1. We denote
by DL(P, v) the pencil in DL(P ) associated with the ansatz polynomial v(λ). For a regular P (λ), pencils
in DL(P ) eigenvalue exclusion theorem was proved [3]: DL(P, v) is a strong linearization of P (λ) if and
only if v(λ)I and P (λ) do not have any common eigenvalues. Moreover, if P (λ) is singular then no pencil
in DL(P ) is a linearization [1].

In this talk, we will give arguments based on the connection between DL(P ) and (Lerer-Tismenetsky)
generalized Bézoutian matrices [4] and show that even when P (λ) is singular an extended eigenvalue
exclusion theorem holds. In particular, if v(λ)I and P (λ) do not have shared eigenvalues, we are able
to fully characterize the minimal indices and the partial multiplicities of the corresponding pencil in
DL(P, v). Namely, we show that all the finite and infinite partial multiplicites are the same as in P (λ)
(the same feature which is true of a strong linearization). Moreover, we show that even if the pencil is not
a linearization, it is still possible to recover all the relevant spectral and minimal data of P (λ) from those
of the pencil, including: minimal indices, partial multiplicities, root polynomials and eigenvectors (defined
for singular matrix polynomials in [2]), and minimal bases. In other words, when P (λ) is singular and
v(λ) satisfies the eigenvalue exclusion condition, then DL(P, v) is an example of a pencil that, albeit not a
linerization, offers a recovery of spectral and minimal data which is as attractive as a strong linearization.

This talk is based on joint work with Froilán Dopico (Carlos III Madrid). Supported by the Suomen
Akatemia, päätos 331240.
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Linearizations of rational matrices from general representations

Maŕıa C. Quintana

Aalto University, Finland.

Given a rational matrix R(λ), the Rational Eigenvalue Problem (REP) consists of finding scalars λ0
(eigenvalues) such that there exist nonzero constant vectors x and y (eigenvectors) satisfying

R(λ0)x = 0 and yTR(λ0) = 0,

under the regularity assumption detR(λ) 6≡ 0. The numerical solution of REPs is recently getting a lot
of attention from the numerical linear algebra community since REPs appear directly from applications
or as approximations to arbitrary nonlinear eigenvalue problems. Rational matrices also appear in linear
systems and control theory.

Nowadays, a competitive method for solving REPs is linearization. Linearization transforms the
REP into a generalized eigenvalue problem in such a way that the pole and zero information of the
corresponding rational matrix is preserved. In this work, we construct a new family of linearizations of
rational matrices R(λ) written in the general form

R(λ) = D(λ) + C(λ)A(λ)−1B(λ),

where A(λ), B(λ), C(λ) and D(λ) are polynomial matrices, with A(λ) regular. Such representation
always exists and are not unique. The new linearizations are constructed from linearizations of the
polynomial matrices D(λ) and A(λ), where each of them can be represented in terms of any polynomial
basis. In particular, the block minimal bases linearizations for polynomial matrices in [2] will be our
main tool for building linearizations of rational matrices in the sense of [1]. In addition, we show how
to recover eigenvectors, when R(λ) is regular, and minimal bases and minimal indices, when R(λ) is
singular, from those of their linearizations in this family. Finally, we show by example how the theory
developed in this work can be used for solving (scalar) rational equations of the form

c(λ)

a(λ)
=
d(λ)

b(λ)
,

where a(λ), b(λ), c(λ) and d(λ) are nonzero scalar polynomials.

This is joint work with Javier Pérez (University of Montana, USA). Work (partially) supported by
“Ministerio de Economı́a, Industria y Competitividad (MINECO)” of Spain and “Fondo Europeo de
Desarrollo Regional (FEDER)” of EU through grants MTM2015-65798-P and MTM2017-90682-REDT,
and the predoctoral contract BES-2016-076744 of MINECO.
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Primitive Companion Matrices

A. Satyanarayana Reddy
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In [1] and [2] we studied exponents of primitive companion and primitive symmetric companion
matices with enties 0 or 1. A symmetric companion matrix, we mean a matrix of the form A+AT , where
A is a companion matrix all of whose entries are in {0, 1} and AT is the transpose of A. In [2] we found
the total number of primitive and imprimitive symmetric companion matrices. We found formulas to
compute the exponent of every primitive symmetric companion matrix. Hence the exponent set for the
class of primitive symmetric companion matrices is completely characterized. We also obtain the number
of primitive symmetric companion matrices with a given exponent for certain cases. This part is the
joint work with Monimala Nej. In [4] we studied representation of cyclotomic fields and their subfields
by circulant matirces and companion matrices.
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Linearizations of matrix polynomials via Rosenbrock polynomial system
matrices

Froilán Dopico

Universidad Carlos III de Madrid, Spain

In the seventies, Rosenbrock [3] introduced the concept of a polynomial system matrix L(λ) of an
arbitrary rational matrix R(λ) ∈ F(λ)m×n, where F is an arbitrary field. Such a system matrix is
partitioned in a quadruple {A(λ), B(λ), C(λ), D(λ)} of compatible matrix polynomials

L(λ) :=

[
A(λ) −B(λ)
C(λ) D(λ)

]
such that its Schur complement with respect toD(λ) equalsR(λ). That is, R(λ) = D(λ)+C(λ)A(λ)−1B(λ).
Since then, the concept of polynomial system matrix has played a key role in linear system theory and
control theory. Later, in a fully independent way, I. Gohberg, M. A. Kaashoek, P. Lancaster, and L.
Rodman introduced the concepts of linearization [2] and strong linearization [1] of matrix polynomials.
The concepts of linearization and strong linearization of matrix polynomials have been widely used in the
last two decades, both from theoretical and numerical perspectives, by many authors all over the world,
and many explicitly constructible classes of linearizations and strong linearizations have been developed
based on them. In this talk, we prove that some of the most important classes of linearizations of matrix
polynomials are, modulo block permutations, linear polynomial system matrices whose matrix A(λ) is
unimodular.

This is joint work with Silvia Marcaida (Universidad del Páıs Vasco UPV/EHU, Spain), Maŕıa del
Carmen Quintana (Aalto University, Finland) and Paul Van Dooren (Université catholique de Lou-
vain, Belgium). This work is part of the “Proyecto de I+D+i PID2019-106362GB-I00 financiado por
MCIN/AEI/10.13039/501100011033”.
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Non-sparse companion matrices

Louis Deaett

Quinnipiac University

The familiar Frobenius companion matrix is an n×n matrix such that n2−n of its entries are constant
and the remaining n entries have the property that when these are given (in some fixed order) the values
a1, a2, . . . , an, the characteristic polynomial of the resulting matrix is

xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an.

In 2003, Fiedler [2] introduced a new family of companion matrices meeting the above description.
Such matrices have found important applications, naturally in the context of applying linear algebra to
problems involving approximating roots of polynomials.

Both the Frobenius and Fiedler companion matrices have the property that each n× n example has
exactly 2n − 1 nonzero entries, the smallest number possible. Such “sparse” companion matrices were
investigated and given a combinatorial characterization in [1].

We consider the notion of a generalized, “non-sparse” companion matrix that results from allowing
any number of nonzero entries. (In fact, one problem we explore is that of determining the number of
nonzero entries possible in such a matrix.) Some of our results apply to sparse and non-sparse companion
matrices alike; e.g., every realization must be non-derogatory. Other results show that some properties
known to be true for sparse companion matrices need not hold in the non-sparse case. Finally, we
explore what is possible for the combinatorial structure of sparse and non-sparse companion matrices,
and highlight some open questions that persist.

This work was done with Jonathan Fischer, Colin Garnett (Black Hills State University), and Kevin
Vander Meulen (Redeemer University College) and was supported in part by an NSERC Discovery Grant
and an NSERC USRA.
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Non-sparse Companion Hessenberg Matrices

Roberto Canogar

Mathematics Department, Universidad Nacional de Educación a Distancia (UNED). C/ Juan del Rosal, 10,

Madrid 28040, Spain

In recent years there has been a growing interest in companion matrices: matrices A of order n, that
have (i) n2 − n entries that are constants; (ii) the n remaining entries of A are the variables x1, . . . , xn;
and (iii) the characteristic polynomial of A is λn − x1λn−1 − · · · − xn−1λ− xn.

Sparse companion matrices (with only 2n − 1 nonzero entries) are well understood: every sparse
companion matrix is equivalent to a Hessenberg matrix of a particular simple type. Recently, Deaett et
al. [2] started the systematic study of non-sparse companion matrices (with more than 2n − 1 nonzero
entries). Our aim is to advance this study. They proved that every non-sparse companion matrix is
nonderogatory, although not necessarily equivalent to a Hessenberg matrix. Nonetheless, companion
matrices which are Hessenberg play an important role, to begin with, the Fiedler companion matrices are
of this type. The variables in a Fiedler companion matrix form a “ladder” that starts in position (n, 1)
with the xn variable and ends in a diagonal position (i1, i1) with the x1 variable; these two positions
define the so called i1-block. In this talk, the non-sparse companion matrices which are unit Hessenberg
are studied: they are companion, have ones in the superdiagonal, and zeros above the superdiagonal.

An intriguing open question was stated by Deaett et al. [2]: “We wonder if, in producing a companion
matrix by changing some zero entries of a Fiedler companion matrix Fi1,...,in by nonzero constants, the
extra nonzero entries are always restricted to the submatrix corresponding to the i1-block”. They partially
confirmed that supposition.

Theorem 5.4 [2]: Let A be a matrix obtained from the Fiedler companion matrix Fi1,...,in by changing
zero entries that are not in the i1-block. Then A is not companion.

We make some progress in this problem by solving the case in which the change of zero entries in the
Fiedler companion matrix is only made below the superdiagonal.

It remains unknown if exists a companion matrix which is obtained from some Fiedler companion
matrix Fi1,...,in by changing at least one zero entry of the i1-block and at least one zero entry above the
superdiagonal.

We will discuss some other related results that appear in [1].

This is joint work with Alberto Borobia (Universidad Nacional de Educación a Distancia, UNED).
Supported by the Agencia Estatal de Investigación of Spain through grants PID2019-106362GB-I00/AEI/10.13039/501100011033
and MTM2017-90682-REDT.
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Companion pencils for scalar (and matrix) polynomials in the monomial basis

Fernando De Terán

Universidad Carlos III de Madrid

In this talk, we consider general companion pencils for scalar polynomials (given in the monomial
basis) over arbitrary fields. More precisely, if

p(z) =
n∑
i=0

aiz
i (4)

is a scalar polynomial, with ai ∈ F, for 0 ≤ i ≤ n, and F being an arbitrary field, then a companion pencil
is of the form L(z) = A+ zB, with A and B being n×n matrices with entries in the ring of polynomials
in a0, · · · , an (namely F[a0, · · · , an]) satisfying

detL(z) = αp(z), for some α ∈ F. (5)

We will first show several well-know classes of companion pencils, and then we will present some theoretical
results about general companion pencils, like:

• The Smith form of every companion pencil is
[
In−1 0

0 1
an
p(z)

]
.

• Companion pencils are nonderogatory.

We will also pay attention to the sparsity. In particular, by imposing some natural restrictions on the
entries, we determine the smallest possible number of nonzero entries in any companion pencil.

If time permits, we will also show how the notion of companion pencil is extended to matrix polyno-
mials, and analyze some of the previous questions for this notion as well.

Most of this talk is based on [1] and [2].

This is joint work with Carla Hernando. Supported by Ministerio de Economı́a y Competitividad
of Spain through grants MTM2017- 90682-REDT and MTM2015-65798-P, and by Agencia Estatal de
Investigación of Spain through grant PID2019-106362GB-I00/AEI/10.13039/501100011033.
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these properties are related directly to the algebra of the power series that define the matrices.
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Enumerative results for connected bipartite non-crossing geometric graphs

Minho Song

AORC, Sungkyunkwan University

In this talk, we present enumeration problems for geometric graphs which are connected bipartite non-
crossing graphs (CBN graphs for short) with n+1 points in convex position. We introduce a production
matrix for such geometric graphs, and a formula for the number of connected bipartite graphs, which
gives an answer to an open question posed at [1]. We also construct a graph operation, which we call
odd-cycle removal, to obtain a generating tree for CBN graphs. For the last, we show a recurrence relation
for the number of CBN graphs by using the characteristic polynomial of the production matrix.

This is joint work with Gi-Sang Cheon, Hong Joon Choi, and Guillermo Esteban.
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On claw-free Toeplitz graphs

Bumtle Kang

Applied Algebra and Optimization Research Center, Sungkyunkwan University

An n×n matrix T = (tij)1≤i,j≤n is called a Toeplitz matrix if ti,j = ti+1,j+1 for each i, j = 1, . . . , n−1.
Toeplitz matrices are precisely those matrices that are constant along all diagonals parallel to the main
diagonal, and thus a Toeplitz matrix is determined by its first row and column.

A Toeplitz graph G = (V,E) is a undirected graph with a symmetric Toeplitz adjacency matrix A(G).
i.e. identical on all its diagonals parallel to the main diagonal of A(G). A Toeplitz graph G is therefore
uniquely defined by the first row of A(G), a (0, 1)-sequence. If the 1’s in the first row of a Toeplitz matrix
are placed at positions 1 + t1, 1 + t2, . . . , 1 + tk with 1 ≤ t1 < t2 < . . . < tk < n = |V |, we may simply
write Tn〈t1, t2, . . . , tk〉, two vertices x, y being connected by an edge iff |x− y| ∈ {t1, t2, . . . , tk}.

This study was initiated by the observation that chordal Toeplitz graphs Tn〈t1, . . . , tk〉 with n >
tk−1 + tk are claw-free. A claw in a graph means a star K1,3 as an induced subgraph. We find an
interesting family of claw-free Toeplitz graphs so called ‘cocoonery’ and show that if n > tk−1 + tk, then
this family becomes exactly the family of claw-free Toeplitz graphs. We also completely characterize a
claw-free Toeplitz graph Tn〈t1, . . . , tk〉 for k = 2 and k = 3. We go further to study Toeplitz graphs which
happen to be line graphs.
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A Riordan Array Approach to Some Problems involving Lattice Paths, Trees
and Partitions

Naiomi T. Cameron

Spelman College

A Riordan array is an infinite lower triangular matrix that is determined by a pair (g, f) of generating
functions meeting certain conditions [4]. With the right conditions for g and f , Riordan arrays can be
used with great effect to study many types of combinatorial problems, including the enumeration of
lattice paths, rooted plane trees and noncrossing partitions [1, 2, 3]. Moreover, since Riordan arrays form
a group, there is an algebraic structure out of which new combinatorial insights can be drawn. This talk
will relate a number of combinatorial problems about lattice paths, partitions, RNA secondary structures
and plane trees to algebraic structure in the Riordan group.

This is joint work with Asamoah Nkwanta (Morgan State University).
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Competition periods and matrix periods of Boolean Toeplitz matrices

Homoon Ryu

Seoul National University, Applied Algebra and Optimization Research Center

Given subsets S and T of {1, . . . , n−1}, an n×n Toeplitz matrix A = Tn〈S;T 〉 is defined to have 1 as
the (i, j)-entry if and only if j− i ∈ S or i− j ∈ T . In this talk, we present our results on matrix periods
and competition periods of Toeplitz matrices over a binary Boolean ring B = {0, 1}. We showed that
if maxS + minT ≤ n and minS + maxT ≤ n, then A has the matrix period d/d′ and the competition
period 1 where d = gcd(s + t | s ∈ S, t ∈ T ) and d′ = gcd(d,minS). Moreover, we could show that
the limit of the matrix sequence {Am(AT )m}∞m=1 is a directed sum of matrices of all ones except zero
diagonal. In many literatures we see that graph theoretic method can be used to prove strong structural
properties about matrices. We also proceeded our work from a graph theoretic point of view.

This is joint work with Gi-Sang Cheon (Sungkyunkwan University, AORC), Bumtle Kang (AORC),
and Suh-Ryung Kim (Seoul National University, AORC). This work was partially supported by Science
Research Center Program through the National Research Foundation of Korea(NRF) Grant funded by
the Korean Government (MSIP)(NRF-2016R1A5A1008055). G.-S. Cheon was partially supported by the
NRF-2019R1A2C1007518. Bumtle Kang was partially supported by the NRF-2021R1C1C2014187. S.-R.
Kim was partially supported by the Korea government (MSIP) (NRF-2017R1E1A1A03070489).
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A Recursive Relation Approach to Riordan Arrays

Tian-Xiao He

Illinois Wesleyan University

A recursive relation approach to Riordan arrays is introduced. This approach gives a representation
of the entries of a Riordan array (g, f) in terms of recursive linear combinations of the coefficients of g.
On the other hand, Riordan arrays provide a unified way to construct the identities of linear recursive
sequences of arbitrary orders with arbitrary initial conditions. Some related topics such as Gaussian
binomial coefficients, interpolation, and q-analogs of Riordan arrays in terms of linear recursive sequences
are also discussed.
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Riordan posets and associated matrix algebras

Gukwon Kwon

Sungkyunkwan University

One may think of a new class of partially ordered sets represented as binary Riordan matrices referred
to as ‘Riordan posets’. This notion extends the theory of Riordan matrices into the domain of poset
theory. In this talk, we establish the criterion for a given binary Riordan matrix to be defined as a
Riordan poset matrix. It is also shown that every Riordan poset is a locally finite poset. This leads to
the construction of various matrix algebras obtained from incidence algebras of Riordan posets. Many
structural properties of Riordan posets are studied and various families of Riordan posets are introduced.
A class of series-parallel posets is derived by extending the notion of Riordan posets to include exponential
Riordan matrices, and it is obtained from Sheffer sequences of classical orthogonal polynomials.

This is joint work with Gi-Sang Cheon, Bryan Curtis and Arnauld Mesinga Mwafise.
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Set coverings

Emanuele Munarini

Politecnico di Milano

In 1966, Comtet wrote a short paper [1, 2] where he showed that the number of certain finite mathe-
matical structures are linked by a combinatorial relation. First, he proved that the number of coverings
and the number of filter basis of a finite set N can both be expressed in terms of the number of families
of non-empty subsets of N . Then, he showed that the number of topologies of N can be expressed in
terms of the number of T0-topologies of N .

In the first part of this talk, we will review the above results in the context of combinatorial species
[4], emphasizing the fact that the mentioned relations hold also at the level of combinatorial objects
and not only at a numerical level. Then, in the second part of the talk, we will focus on coverings and
minimal coverings [3], and we will present some combinatorial and algebraic properties for the associated
polynomials. Some of these results are obtained by using Sheffer matrices.
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Pseudo-involutions and palindromes in the Riordan group

Lou Shapiro

Howard University

Recently, several papers have come out linking pseudo-involutions and palindromes. This presentation
is an introduction to some of the main ideas, examples, and uses of the connection of these two topics.
The more direct result is that if A,B,C are pseudo-involutions so are ABA,BAAB,ABCBA, and any
other palindromic combination. We present a few examples and then move onto the second connection.

A common functional relation for many combinatorial generating functions is g = 1 + zγ (g). Then

the pseudo-involutory companion for g is f = z γ(g)

gγ
(

1
g

) . The simplest case occurs when γ (g) = γ (1/g) gd,

so that γ (g) is a palindrome. In that case f = zgd−1. Then for no extra work we know what f is, and we
have a pseudo-involution

(
g, zgd−1

)
in the (d−1)-Bell subgroup. For instance, for the Catalan generating

function γ (z) = z2, so γ (z) /γ (1/z) = z4 and f = zC4−1 so that
(
C, zC3

)
is a pseudo-involution in the

3-Bell subgroup.

Going further leads to the twin-power theorem, B-functions, using Chebyshev polynomials to compute
B-functions, and the pseudo-enhancement theorem.
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Commutators in the Riordan group

Ana Luzón

Universidad politécnica de Madrid

In this talk, I will present some results related to commutators in the Riordan group. I will describe
some particular examples involving involutions, pseudo-involutions or, generally, reversible elements. To
do that, I will use a special nested sequence of normal subgroups which are really the Riordan version
of some subgroups of the substitution group of formal power series introduced by Jennings in [1]. This
work is based in our recent preprint [2].

This is joint work with M. A. Morón (UCM) and L.F. Prieto-Mart́ınez (UPM). Supported by the
Spanish goverment, Grant PGC2018-098321-B-I00.
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Quasi-involutions of the Riordan group

Nikolaos Pantelidis

South East Technological University

A Riordan quasi-involution is an aerated Riordan matrix whose inverse contains the exact same
entries with ± signs on alternating non-zero subdiagonals [1, 2]. In this talk, we discuss about the
quasi-involutions as combinatorial and algebraic objects in Riordan array research [4].

Expanding the concept of a quasi-involution to k−leveled aerated matrices, for k > 1, we analyse
these elements that satisfy the quasi-involution property. From a combinatorial point of view, we present
structural properties of these elements. We link them to known Riordan subgroups, and by introducing
the theory of quasi-compressions, we prove a factorization theorem for a certain family of Riordan quasi-
involution. Finally, we discuss the importance of quasi-involutions in the Heisenberg-Weyl algebra [3].

This is joint work with Aoife Hennessy (South East Technological University) and Paul Barry (South
East Technological University).
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MS-17: Linear Algebra for Designs and
Codes

Organisers: Ronan Egan (Dublin City University), Ilias Kotsireas (Wilfrid Laurier
University), Pardaig Ó Catháin (Dublin City University) and Eric Swartz (College of
William and Mary)

Theme: Linear algebra is an essential tool in the study of designs and codes: the Bruck-Ryser-
Chowla theorem uses invariants of quadratic forms to give the best known non-existence results
for designs. Delsarte’s theory of association schemes and linear programming bounds is central in
the study of coding theory. This mini-symposium will bring together researchers in design theory
and coding theory to discuss old and new results in the field with an emphasis on linear algebraic
techniques.

20 June 11:00 AC202 Santiago Barrera Acevedo p190
Cocyclic Two-Circulant Core Hadamard Matrices

20 June 11:30 AC202 Andrea Švob p199
On some constructions of divisible design Cayley graphs and digraphs

20 June 12:00 AC202 Guillermo Nuñez Ponasso p192
The Maximal Determinant Problem and Generalisations

20 June 12:30 AC202 Ian Wanless p193
Perfect 1-factorisations and Hamiltonian Latin squares

23 June 14:00 AC202 Ferdinand Ihringer p194
The Density of Complementary Subspaces

23 June 14:30 AC202 Eimear Byrne p195
q-Polymatroids and Designs over GF (q)

23 June 15:00 AC202 Siripong Sirisuk p196
Enumeration of some matrices and free linear codes over finite commutative rings

24 June 10:30 AC202 Dean Crnković p197
q-ary strongly regular graphs

24 June 11:00 AC202 Robert Craigen p198
Negacyclic weighing matrices

24 June 11:30 AC202 Cian O’Brien p293
Weighted Projections of Alternating Sign Matrices and Latin-like Squares

24 June 12:00 AC202 Andrea Švob p199
On some constructions of divisible design Cayley graphs and digraphs
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Cocyclic Two-Circulant Core Hadamard Matrices

Santiago Barrera Acevedo

Monash University

The two-circulant core (TCC) construction for Hadamard matrices (HMs) uses two sequences with
almost perfect autocorrelation to construct a HM. A research problem of K. Horadam asks whether such
matrices are cocyclic. Using ideas from permutation groups, we prove that the order of a cocyclic TCC
HM coincides with the order of a HM of Paley type, Sylvester type or certain multiples of these orders.
In addition, we show that there exist cocyclic TCC HMs at all allowable order less or equal to 1000 with
at most one exception.

This is joint work with Padraig Ó Catháın and Heiko Dietrich.
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On some constructions of divisible design Cayley graphs and digraphs

Andrea Švob

University of Rijeka

Haemers, Kharaghani and Meulenberg have defined divisible design graphs (DDGs for short) as a
generalization of (v, k, λ)-graphs (see [4]). Divisible design digraphs, a directed graph version of divisible
design graphs, were introduced in [1]. Let G be a group and S a subset of G not containing the identity
element of the group, which will be denoted by e. The vertices of the Cayley digraph Cay(G,S) are the
elements of the group G, and its arcs are all the couples (g, gs) with g ∈ G and s ∈ S. In this talk we
will present some constructions of divisible design Cayley graphs and digraphs that were studied in [2]
and [3].

This is joint work with Dean Crnković (University of Rijeka) and Hadi Kharaghani (University of
Lethbridge). Supported by the Croatian Science Foundation, Grant 6732.
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The Maximal Determinant Problem and Generalisations

Guillermo Nuñez Ponasso

Worcester Polytechnic Institute

A corollary to Hadamard’s inequality states that every n× n matrix H with complex entries of mod-
ulus 1 satisfies the determinant inequality | det(H)| ≤ nn/2. If H meets the bound with equality, then H
is an Hadamard matrix and HH∗ = nIn. The case where the entries of H are ±1 is well-studied. Here
the Hadamard bound is only achievable when n = 1, 2 or a multiple of 4. In general one may ask what
the maximum absolute value of the determinant of a ±1 matrix of order n is. Matrices achieving this
maximum are known as maximal determinant matrices of D-optimal designs, which are applied in the
statistical theory of experimental designs. There are sharpened upper bounds for the determinant when
n ≥ 3 is not divisible by 4, which depend on the residue class of n modulo 4.

In this talk, we consider a generalisation of the maximal determinant problem to the case of matrices
with entries taken from the set of k-th roots of unity. As in the real case, an Hadamard matrix with
entries in the k-th roots of unity, known as a Butson-Hadamard matrix, saturates Hadamard’s bound.
Such matrices do not always exist, however. We will present new upper and lower bounds for the maximal
value of the determinant in the case of third, fourth and sixth roots of unity. These are precisely the
cases when the k-th roots generate a lattice in C, which allows us to generalise previously-known upper
bounds from the real case. Finaly we present results for lower bounds obtained from matrices in the
Bose-Mesner algebra of strongly regular graphs and cyclotomic association schemes.



Mon 20 June, 12:30, AC202 193 MS-17

Perfect 1-factorisations and Hamiltonian Latin squares

Ian Wanless

Monash University

A 1-factorisation of a graph is a decomposition of the edges of the graph into 1-factors (perfect
matchings). The 1-factorisation is perfect if the union of any two of its 1-factors is a Hamilton cycle.
A P1F of the complete bipartite graph Kn,n is equivalent to a row-Hamiltonian Latin square of order
n. These are Latin squares with no non-trivial Latin subrectangles; equivalently, the permutation which
maps any row to any other row is an n-cycle. Each Latin square has six conjugates obtained by uniformly
permuting its (row, column, symbol) triples. Let ν(L) denote the number of conjugates of L that are
row-Hamiltonian. It is easy to see that ν(L) ∈ {0, 2, 4, 6} and that ν = 0 can be achieved for all n > 3.
At the other extreme, ν = 6 is achieved by the so-called atomic Latin squares, including the Cayley
tables of cyclic groups of prime order. There is also a known infinite family with ν = 2. By converting
our problem into linear algebra, we were able to find the first infinite family with ν = 4. We can build
Latin squares in which every pair of rows form a Hamilton cycle and no pair of columns form a Hamilton
cycle. As a corollary, we answer a question on quasigroup varieties posed by Falconer in 1970.

This is joint work with Jack Allsop (Monash)
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The Density of Complementary Subspaces

Ferdinand Ihringer

Universiteit Gent

Let V be a finite vector space of dimension d = e + e′ over the field with q elements. Consider a

family Y1 of e-spaces and a family Y ′ of e′-spaces with positive density of at least C−1q1−
d
2 each. We

show, using an easy argument relying on the expander mixing lemma and well-known properties of the
irreducible modules of Grassmann graphs, that the probablity of S1 ∩ S2 = {0} for (S1, S2) ∈ Y1 × Y2 is
at least 1− (C + 1)q−1 + (C − 1)q−2.

Our motivation is as follows: Suppose that V is equipped with a nondegenerate reflexive sesquilinear
form σ. Let Y1 and Y2 be the families of nondegenerate subspaces with respect to σ. Using long and
sophisticated geometric arguments it is shown in [1] that the probability of S1 ∩ S2 = {0} is at least
1− Cq−1 for relatively small C, while leaving a few cases open. Our linear algebra technique takes care
of the open cases in [1], tends to improve C, and avoids any deep dives into geometric arguments.

This is joint work with Stephen Glasby (University of Western Australia) and Sam Mattheus (Vrije
Universiteit Brussel).
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q-Polymatroids and Designs over GF (q)

Eimear Byrne

University College Dublin

A q-polymatroid consists of a lattice of subspaces of a vector space endowed with a rank function that
is both increasing and submodular. They were studied independently by Gorla et al (2020) and Shiromoto
(2019) as q-analogues of polymatroids and in reference to matrix codes. A number of invariants of codes
are in fact matroid invariants, including the MacWilliams duality theorem. MacWilliams identities for
classical matroids have been studied by a number of authors (e.g. Brylawski, Oxley, Britz, Shiromoto).
In this talk we will consider duality of q-polymatroids and will give a version of a MacWilliams theorem
for q-polymatroids, using the characteristic polynomial. As as application of this result, we will state
an Assmus-Mattson-like theorem that establishes criteria for the existence of weighted subspace designs
arising from a q-polymatroid.

This talk is based on joint work with M. Ceria, R. Jurrius, and S. Ionica.

Bibliography

[1] Eimear Byrne, Michela Ceria, Relinde Jurrius, and Sorina Ionica Weighted Subspace Designs from q-
Polymatroids. arXiv:2104.12463, 27 pgs (2021).
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Enumeration of some matrices and free linear codes over finite commutative
rings

Siripong Sirisuk

Thammasat University, Pathum Thani, Thailand

Let R be a finite commutative ring with identity. A row of single unit in Rn is a row in which a
single entry is a unit and all other entries are zero. Two enumeration problems over R are presented.
We enumerate the matrices over R with a given McCoy rank and a given number of rows of single unit.
We also enumerate the free linear codes over R which have a given rank and a given number of standard
basis vectors.

This study was supported by Thammasat University Research Fund, Contract No. TUFT 27/2565.
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q-ary strongly regular graphs

Dean Crnković

University of Rijeka

The notion of q-analog of designs has been introduced by Delsarte [3]. In 1987, Thomas [4] constructed
the first non-trivial q-analog of design with parameters 2-(n, 3, 7; 2), n > 6, n = 6k + 1 or n = 6k − 1.
An important result was given in [2], where the authors constructed a design over a finite field with
parameters 2-(13, 3, 1; 2) which was the first known example of a Steiner q-design that does not arise
from spreads. In this talk we will introduce the notion of q-analog of strongly regular graphs, given in
[1], and present some new results.

This is joint work with Michael Braun (Darmstadt University of Applied Sciences), Maarten De Boeck
(University of Rijeka), Vedrana Mikulić Crnković (University of Rijeka) and Andrea Švob (University of
Rijeka). Supported by the Croatian Science Foundation, Grant 6732.
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Negacyclic weighing matrices

Robert Craigen

University of Manitoba

A matrix obtained by negating every entry of a circulant matrix below the diagonal is said to be ne-
gacyclic. Negacyclic structure, as with its cousin circulant structure, arises remarkably often in questions
connected to Hadamard, weighing matrices and generalizations thereof, but in comparison to that for
circulants, the literature devoted specifically to this structure has been sparse and fragmented. There
are numerous comprehensive surveys on the state of knowledge of circulant weighing matrices, including
at least three separate graduate theses having this title: Circulant weighing matrices, and at least two
others including that exact phrase, besides a sizeable literature devoted entirely to the special case of
circulant Hadamard matrices ... but there is no analog for negacyclic case.

We develop some basic theory of negacyclic weighing matrices both in aspects parallel to circulant
matrices and those in which the two types diverge. We will also discuss the results of an empirical
examination of the existence of negacyclic weighing matrices of small orders (up to 52) and square
weights up to 100.

This talk is includes work carried out with Undergraduate Research Students Ted Eaton, Colin Des-
marais, Peter Naylor, Ian Thompson, William Kellough and Dana Kapoostinsky during 2013–2020 within
USRA programs funded by NSERC and the University of Manitoba, and partially supported by an NSERC
grant.
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On some constructions of divisible design Cayley graphs and digraphs

Andrea Švob

University of Rijeka

Haemers, Kharaghani and Meulenberg have defined divisible design graphs (DDGs for short) as a
generalization of (v, k, λ)-graphs (see [4]). Divisible design digraphs, a directed graph version of divisible
design graphs, were introduced in [1]. Let G be a group and S a subset of G not containing the identity
element of the group, which will be denoted by e. The vertices of the Cayley digraph Cay(G,S) are the
elements of the group G, and its arcs are all the couples (g, gs) with g ∈ G and s ∈ S. In this talk we
will present some constructions of divisible design Cayley graphs and digraphs that were studied in [2]
and [3].

This is joint work with Dean Crnković (University of Rijeka) and Hadi Kharaghani (University of
Lethbridge). Supported by the Croatian Science Foundation, Grant 6732.
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MS-18: Kemeny’s constant on networks
and its application

Organisers: Ángeles Carmona, Maria José Jiménez and Margarida Mitjana

Theme: The computation of the Kemeny’s constant is a classical problem in the theory of
Markov chains and has multiple applications. The different ways to afford the problem go from
Linear Algebra to discrete Potential Theory. The mean first passage time is closely related to other
well–known metrics for graphs and Markov chains. First, the Kirchhoff index, also known as the
effective graph resistance, is a related metric quantifying the distance between pairs of vertices
in an electric network. The relationship between electrical networks and random walks on
graphs is well–known. For an arbitrary graph, the Kirchhoff index and the Kemeny constant can be
calculated from the eigenvalues of the conductance matrix and the transition matrix, respectively.
This minisymposium will give an opportunity to communicate the latest developments in the area
and its applications presenting some current research and stimulating new ideas and collaborations,
as well as bringing some highlights to its classical properties.

22 June 10:30 O’Flaherty Àlvar Mart́ın p201
G-inverses for random walks

22 June 11:00 O’Flaherty Federico Poloni p202
An edge centrality measure based on the Kemeny constant

22 June 11:30 O’Flaherty Maŕıa José Jiménez p203
Mean first passage time for distance-biregular graphs

23 June 10:30 AC215 Ángeles Carmona p204
Schrödinger random walks and mean first passage time generalization

23 June 11:00 AC215 Karel Devriendt p205
The resistance magnitude of a graph

23 June 11:30 AC215 Manuel Miranda p206
Biased Advection operators on undirected graphs

23 June 12:00 AC215 Steve Kirkland p207
Directed forests and the constancy of Kemeny’s constant

23 June 14:30 O’Flaherty Jane Breen p208
Kemeny’s constant for non-backtracking random walks

23 June 15:00 O’Flaherty Robert E. Kooij p209
Kemeny’s Constant for Several Families of Graphs and Real-world Networks
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G-inverses for random walks

Àlvar Mart́ın

Universitat Politècnica de Catalunya - BarcelonaTech

In terms of random walks skills, if we asume that the system is in an initial state si, the number of
expected steps to reach state sj is described by the so-called Mean First Passage Time (MFPT), which
is denoted by mij . The matrix characterizing the MFPT can be written in terms of the g-inverses of the
combinatorial Laplacian, see [1].

Although the MFPT is an element that allows to describe random walks, it is not the only one. It
is well known that the time to reach a random state sj , starting from an initial state si, is a constant
that does not depend of the initial state. This time is the so-called Kemeny’s constant, that it can be
expressed in terms of g-inverses of the above-mentioned Laplacian.

In this communication we will obtain expressions both for the MFPT and for the Kemeny’s constant
in terms of g-inverses of the combinatorial Laplacian. In addition, as an application, we introduce the
case of the star.

This is joint work with Ángeles Carmona and Maria José Jiménez (UPC). Partially supported by the
Departament de Matemàtiques of UPC.
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An edge centrality measure based on the Kemeny constant

Federico Poloni

University of Pisa

We introduce a centrality measure c(e) for the edges e of an undirected graph G. It is based on the
variation of the Kemeny constant of the graph after removing the edge e, following an idea introduced in
[1]. The new measure is designed to ensure non-negativity, avoiding the so-called Braess paradox [2]. We
introduce an optimized numerical method to compute it, and a regularization technique to deal with cut-
edges and disconnected graphs. Numerical experiments performed on synthetic tests and on real road
networks show that this measure is particularly effective in revealing bottleneck roads whose removal
would greatly reduce the connectivity of the network.

This is joint work with D. Altafini, D. A. Bini, V. Cutini, and B. Meini (University of Pisa, Depart-
ment of Mathematics and Department of Energy Engineering, Systems, Land and Buildings). Supported
by the University of Pisa, grant PRA-2022-61 and by INDAM/GNCS.
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Mean first passage time for distance-biregular graphs

Maŕıa José Jiménez

Universitat Politècnica de Catalunya-BarcelonaTech

In this presentation, we obtain the explicit expression for the Group inverse of the Laplacian matrix
associated with distance–biregular graphs, ([1]). A bipartite graph is called distance–biregular (DBR)
if all the vertices of the same partite set admit the same intersection array. So, this kind of graphs are
characterized by having two intersection arrays instead of one as in the case of distance-regular graphs.
Examples of this kind of graphs are complete bipartite graphs, subdivision graphs of minimal cages and
some block designs, see [3]. As an application, we provide the mean first passage time for DBR graphs
as well as the Kemeny constant. The above expression will be given in terms of the so–called equilibrium
measure for a vertex {x}, see [2]. Finally, we provide some examples as star graphs.

This is joint work with Á. Carmona and A.M. Encinas (UPC). Partially supported by the Departament
de Matemàtiques of UPC.
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Schrödinger random walks and mean first passage time generalization

Ángeles Carmona

Universitat Politècnica de Catalunya-BarcelonaTech

For spreading and diffusion processes, Random Walks (RW) represents a mathematical model and can
be used to extract information about important issues in networks. In the study of networks, one often
seeks to rank nodes, edges, or other structures based on their relative importance (centrality measures).
RW are characterized from the transition probability matrix, that is the probabilistic counterpart of
the combinatorial Laplacian or even of the normalized Laplacian. The short–term behavior of a RW
can be studied trough the so–called mean first passage time from one state to another. The mean first
passage time from a given state is the solution of a Poisson problem with respect to the probabilistic
Laplacian and hence, from a matrix point of view, it can be obtained from some generalized inverses of
the probabilistic Laplacian. On the other hand, it is known that the expected time to get any randomly
chosen vertex from a given one is constant and independent of the starting vertex. The common value is
called Kemeny’s constant. The computation of Kemeny’s constant is a classical problem in the theory of
RW and the different ways to afford the problem go from Linear Algebra to discrete Potential Theory.
As a consequence of our works in the context of BVP on networks, we have obtained some results that
express the mean first passage time in terms of equilibrium measures for the combinatorial Laplacian,
[1].

All the above models are based on the hypothesis that in each step the random walk move from
one node to another different one. Only the so-called Lazy Random Walks contemplate the probability
of remaining at a state, but this probability is always constant and usually equal to 1/2. Therefore,
they are far away to include all the real situations that would be modeled in this context. Assigning a
different positive transition probability to each node will include the probability to remain in each state,
depending on the state, and suppose a challenge in RW Theory. Our previous work has proved that this
assumption is consistent with the consideration of general Schrödinger operators (M-matrices), [2]. The
transition probability associated to a state will be defined through the potential at the associated node.
So, we can consider a new type of RW that could be called Schrödinger random walk (SRW). We define
the fundamental parameters, such as the mean first passage time, in the case of SRW, which will provide
new properties and information. Moreover, they can be obtained from the solution of boundary value
problems for the Schrödinger operators.

This is joint work with A.M. Encinas, M.J. Jiménez, M. Mitjana and À. Mart́ın (UPC). Partially
supported by the Departament de Matemàtiques of UPC.
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The resistance magnitude of a graph

Karel Devriendt

Mathematical Institute, University of Oxford, Oxford, UK and the Alan Turing Institute, London, UK

In [1], Tom Leinster introduced the magnitude as an invariant of enriched categories – this is a general
class of objects that includes finite metric spaces. In many cases, magnitude behaves similar to the Euler
characteristic or cardinality, and in the case of metric spaces it can be thought of as the ‘effective number
of points’ at a given scale.

Let (X, d) be a finite metric space with the similarity matrix at scale t > 0 given by Zt :=
(exp(−d(i, j)t)). If this matrix is invertible, the magnitude is defined as

|Zt| := 1TZ−1t 1.

Leinster studied the magnitude for the vertices of a graph with the shortest-path distance as a metric
(V, d) in [? ]. If instead we consider the vertices of a graph with the effective resistance as a metric
(V, ω), then the leading term of magnitude equals

lim
t→0

|Zt| − 1

t
= 2σ2.

We call σ2 the resistance magnitude of a graph and with resistance matrix Ω = (ω(i, j)), this has the
following equivalent definitions

2σ2 =
(
1TΩ−11

)−1
= max

fT 1=1
fTΩf .

The resistance magnitude appears to be a rich graph invariant with many properties: it is related to
discrete curvature (in the sense introduced in [3]), it has certain inclusion-exclusion and submodularity
properties and it is the squared radius of the Euclidean embedding of (V,

√
ω), see [4].

The resistance magnitude relates to other well-known resistance-based graph invariants such as the
Kirchhoff index (RG) and Kemeny’s constant (K), as

RG ≤ σ2/n2 and K ≤ σ2/m

where n = |V | is the number of vertices and m = |E| the number of edges (or total edge weight for
weighted graphs); equality is achieved in both cases for vertex-transitive graphs.

The author was supported by The Alan Turing Institute under EPSRC grant EP/N510129/1. This work
was done in collaboration with Renaud Lambiotte.
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Biased Advection operators on undirected graphs

Manuel Miranda

Instituto de Fisica Interdisciplinar y Sistemas complejos (IFISC) UIB-CSIC

In certain real-world scenarios it is important to account for the influence of nearest neighbors on
the diffusion of a particle located at a given node of an undirected graph. To capture this influence
the so-called hubs-biased graph Laplacians were proposed in [2]. We investigated the self-adjoint of
these operators and discovered that they correspond to operators describing advective processes, where
a degree-based drift pulls/push the diffusive particle from/towards the hubs of the network. Advection
operators were previously defined only for digraphs, where the direction of the edges ruled the drift,
but the new operators that we present here act on undirected graphs. The process controlled by this
operators converges towards an ordered state in which the final concentration of the nodes depends on
the degree of each node.

In this talk, we will explain how this new advective operators in undirected graphs are constructed,
which properties do they have and which is its final configuration. Moreover, we will construct an
advection-diffusion equation in which both processes “compete” in a graph. We will show the analytic
expression of the steady state of this kind of processes. Finally, we will illustrate the current ideas
studying how advection-diffusion shapes movement of the species L. catta when the foraging occurs in a
very patched landscape network in Southern Madagascar.

This is joint work with Ernesto Estrada (IFISC). Supported by the scholarship PRE2020-092875 by
MCIN/AEI/10.13039/501100011033 and by FSE invierte en tu futuro.
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Directed forests and the constancy of Kemeny’s constant

Steve Kirkland

University of Manitoba

Consider a discrete-time, time-homogeneous Markov chain on states 1, . . . , n whose transition ma-
trix is irreducible. Denoting the mean first passage times by mjk, j, k = 1, . . . , n and the stationary
distribution vector entries by vk, k = 1, . . . , n a remarkable result of Kemeny reveals that the quantity∑n

k=1mjkvk does not depend on the choice of j. In this talk, we consider
∑n

k=1mjkvk from the perspec-
tive of algebraic combinatorics, and provide an intuitive explanation for its independence on the choice
of the state j. The all minors matrix tree theorem is the key tool employed.
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Kemeny’s constant for non-backtracking random walks

Jane Breen

Ontario Tech University

Kemeny’s constant for a connected graph G is the expected time for a random walk to reach a
randomly-chosen vertex u, and is a quantity independent of the choice of the initial vertex. We extend
the definition of Kemeny’s constant to non-backtracking random walks and compare it to Kemeny’s
constant for simple random walks. We explore the relationship between these two parameters for several
families of graphs and provide closed-form expressions for regular and biregular graphs. In nearly all
cases, the non-backtracking variant yields the smaller Kemeny’s constant.

This is joint work with Nolan Faught, Cory Glover, Mark Kempton, Adam Knudson, and Alice Oveson
(Brigham Young University). Supported by NSERC Discovery Grant RGPIN-2021-03775.
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Kemeny’s Constant for Several Families of Graphs and Real-world Networks

Robert E. Kooij

Delft University of Technology, the Netherlands

The linear relation between Kemeny’s constant, a graph metric directly linked with random walks,
and the effective graph resistance in a regular graph has been an incentive to calculate Kemeny’s constant
for various networks. In this paper we consider complete bipartite graphs, (generalized) windmill graphs
and tree networks with large diameter and give exact expressions of Kemeny’s constant. For non-regular
graphs we propose two approximations for Kemeny’s constant by adding to the effective graph resistance
term a linear term related to the degree heterogeneity in the graph. These approximations are exact
for complete bipartite graphs, but show some discrepancies for generalized windmill and tree graphs.
However, we show that a recently obtained upper-bound for Kemeny’s constant in [1] based on the
pseudo inverse Laplacian gives the exact value of Kemeny’s constant for generalized windmill graphs.
Finally, we have evaluated Kemeny’s constant, its two approximations and its upper bound, for 243
real-world networks. This evaluation reveals that the upper bound is tight, with average relative error of
only 0.73%. In most cases the upper bound clearly outperforms the other two approximations.

Bibliography

[1] Xiangrong Wang, J.L.A. Dubbeldam, Johan L A and P. Van Mieghem, Kemeny’s constant and the effective
graph resistance, Linear Algebra and its Applications 535:231-244, (2017).



210

MS-20: Special Matrices

Organisers: Natália Bebiano (Universidade de Coimbra), Susana Furtado (Universi-
dade do Porto) and Mikail Tyaglov (Shanghai Jiao Tong University)

Theme: The goal of this minisymposium is to spread recent developments, and stimulate new
research, on structured matrices with applications in various fields of pure and applied science.
Future collaborations among researchers will also be promoted. Particular attention will be given
to tridiagonal, k-Toeplitz, Hankel, reciprocal, stochastic, Hurwitz and birth and death matrices.
The use of these matrices in such areas as statistics, numerical analysis, engineering, economics
and physics will be discussed.

20 June 14:30 AC203 Susana Furtado p211
Efficient vectors for perturbed consistent matrices

20 June 15:00 AC203 Richard Ellard p212
An algorithmic approach to the Symmetric Nonnegative Inverse Eigenvalue Problem

20 June 15:30 AC203 Sirani M. Perera p213
A Low-complexity Algorithm to Uncouple the Mutual Coupling Effect in Antenna Arrays

20 June 16:00 AC203 Natália Bebiano p214
The periodic pseudo-Jacobi inverse eigenvalue problem

22 June 10:30 AC203 João R. Cardoso p218
Some special matrices arising in computer vision and related optimization problems

22 June 10:30 AC203 Domingos M. Cardoso p215
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions

22 June 11:00 AC203 Christian Berg p216
Self-adjoint operators associated with Hankel moment matrices

22 June 11:30 AC203 Rute Lemos p217
Inequalities for means of matrices

23 June 14:00 AC203 Mikhail Tyaglov p219
Tridiagonal matrices with two-periodic main diagonal
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Efficient vectors for perturbed consistent matrices

Susana Furtado

CEAFEL and Faculdade de Economia do Porto

An n × n matrix A = [aij ] is said to be a pairwise comparison matrix (PC matrix) or a reciprocal
matrix if it is positive and aij = 1

aji
, for i, j = 1, . . . , n. If, in addition, aijajk = aik, for i, j, k = 1, . . . , n,

then A is said to be consistent or transitive.

PC matrices and, in particular, consistent matrices, play an important role in the Analytic Hierarchy
Process, a method used in Decision Making. In this method it may be important to approximate a PC
matrix by a consistent one. In this context, the notion of efficient vector for a PC matrix arises.

A positive vector w =
[
w1 · · · wn

]T
is said to be efficient for an n × n PC matrix A = [aij ] if

there is no other vector v =
[
v1 · · · vn

]T
such that∣∣∣∣aij − vi

vj

∣∣∣∣ ≤ ∣∣∣∣aij − wi
wj

∣∣∣∣ for all 1 ≤ i, j ≤ n,

with the inequality strict for at least one pair (i, j).

In this talk we describe all efficient vectors for a simple perturbed consistent matrix, that is, a
PC matrix obtained from a consistent one by perturbing one entry above the main diagonal, and the
corresponding reciprocal entry. As a consequence, we give a simple proof of the result obtained by
K. Ábele-Nagy and S. Bozóki (2016) that states that any (positive) eigenvector of a simple perturbed
consistent matrix associated with the Perron eigenvalue is efficient. Some related results for double and
triple perturbed consistent matrices are also presented.

Based on a joint work with Henrique Cruz and Rosário Fernandes.
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An algorithmic approach to the Symmetric Nonnegative Inverse Eigenvalue
Problem

Richard Ellard

TU Dublin

Let σ := (λ1, λ2, . . . , λn) be a list of n real numbers. If there exists an n × n symmetric matrix A
with nonnegative entries and spectrum σ, then we say σ is symmetrically realisable. The Symmetric
Nonnegative Inverse Eigenvalue Problem (SNIEP) is the problem of characterising all symmetrically
realisable lists.

Ellard and Šmigoc [1] showed that essentially all previously known sufficient conditions for symmetric
realisability were equivalent; however, determining whether a given list of real numbers satisfies any of
these equivalent conditions remained nontrivial. In this talk, I present an explicit algorithm to make this
determination for a given list.

This is joint work with Helena Šmigoc (University College Dublin). Supported by Science Foundation
Ireland, Grant 11/RFP.1/MTH/3157.
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A Low-complexity Algorithm to Uncouple the Mutual Coupling Effect in
Antenna Arrays

Sirani M. Perera

Embry-Riddle Aeronautical University, USA

The interaction of electrical and magnetic fields between antenna array elements causes mutual cou-
pling in multi-beam arrays. The presence of mutual coupling between array elements leads to variation
in impedance, alteration in radiation patterns, changes in array characteristics, and noise coupling.

In this talk, we will utilize the structure of the mutual coupling matrix to obtain a sparse factorization
followed by a low-complexity algorithm to reduce the mutual coupling effects. Next, signal flow graphs will
be presented to show the connection of the algebraic operations associated with the proposed algorithm
and to realize the system as an integrated circuit. Finally, the proposed fast algorithm will be exploited
to digitally uncouple the mutual coupling effect in multi-beam antenna arrays.

This is joint work with Arjuna Madanayake (Florida International University, USA).
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The periodic pseudo-Jacobi inverse eigenvalue problem

Natália Bebiano

University of Coimbra

The problem of reconstructing a periodic pseudo-Jacobi matrix, which is derived from the discretiza-
tion and truncation of Schrödinger equation, arises in non-Hermitian quantum mechanics. Also the
reconstruction of the Hamiltonian system of an indefinite Toda lattice and the symmetry reduction of
the Wess-Zumino-Novikov-Witten model in quantum field theory are problems deserving the attention
of physicists and mathematicians. In mathematics, this problem is referred to as periodic pseudo-Jacobi
inverse eigenvalue problem (hereafter PPJIEP), and concerns the reconstruction from assigned spectral
data of a specified periodic pseudo-Jacobi matrix Inspired in a discrete version of Floquet theory in
a space with indefinite metric [Math. Comp. 35 (1980) 1203-1220] and a van Moerbeke’s idea [Invent.
Math. 37 (1976) 45-81], the PPJIEP problem is solved. We use two methods to characterize the
signature operator so that the solution exists.

This is joint work with Wei-Ru Xu, Yi Gong and Guo -Liang Chen (China).
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Sharp bounds on the least eigenvalue of a graph determined from edge clique
partitions

Domingos M. Cardoso

Center for Research and Development in Mathematics and Applications - CIDMA, University of Aveiro

Sharp bounds on the least eigenvalue of an arbitrary graph are presented. Necessary and sufficient
(just sufficient) conditions for the lower (upper) bound to be attained are deduced using edge clique
partitions. As an application, we prove that the least eigenvalue of the n-Queens’ graph Q(n) is equal to
−4 for every n ≥ 4 and it is also proven that the multiplicity of this eigenvalue is (n− 3)2. Additionally,
some results on the edge clique partition graph parameters are obtained.

This is joint work with Inês Serôdio Costa (University of Aveiro) and Rui Duarte (University of
Aveiro). Supported by the Center for Research and Development in Mathematics and Applications
(CIDMA) which is financed by national funds through Fundação para a Ciência e a Tecnologia (FCT),
Grant UIDB/04106/2020.
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Self-adjoint operators associated with Hankel moment matrices

Christian Berg

University of Copenhagen, Denmark

Let M∗ denote the set of positive measures with moments of any order and infinite support on the real
line R. The moment sequence of µ ∈M∗ is denoted

mn =

∫ ∞
−∞

xn dµ(x), n = 0, 1, . . . , (6)

and we let
H = Hµ = (mk+l)

∞
k,l=0 = {mk+l} (7)

denote the corresponding Hankel matrix.

Denoting by F the set of sequences g ∈ `2 with only finitely many non-zero entries, we have a positive
sesquilinear form Q defined on F × F

Q(g, h) =

∞∑
k,l=0

mk+lgkhl, (8)

called the Hankel form associated with the sequence (mn).

Widom proved in 1966 that the form (Q,F) is bounded on `2 if and only if mn = O(1/n). In 2016
Yafaev proved that the form is closable if mn = o(1) and characterized the closure of the form based on
his earlier work on quasi-Carleman operators. We give a new proof of the description of the closure based
entirely on moment considerations. In 2020 Berg and Szwarc pointed out that the form (Q,F) is also
closable if µ is indeterminate of if µ is determinate with finite index of determinacy. We give a description
of the self-adjoint operators H = Hµ (bounded or unbounded) in the Hilbert space `2 associated with
the closed Hankel forms in the three cases mentioned, where the form is closable.

This is joint work with Ryszard Szwarc (Wroc law), see [1].
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Inequalities for means of matrices

Rute Lemos

CIDMA, University of Aveiro, Portugal

The axiomatic theory of operator connections and means was developped by F. Kubo and T. Ando
[1]. Inequalities involving eigenvalues and singular values of Kubo-Ando means of matrices are surveyed
and some log-majorization type results are deduced. Some inequalities for the singular values of Heinz
means, which are not Kubo-Ando type means, are also obtained.

This is joint work with Graça Soares (CMAT–UTAD). Supported by Portuguese funds through the
Center for Research and Development in Mathematics and Applications (CIDMA) and the Portuguese
Foundation for Science and Technology (FCT), project UIDB/04106/2020.
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Some special matrices arising in computer vision and related optimization
problems

João R. Cardoso

Polytechnic Institute of Coimbra – ISEC, and University of Coimbra – CMUC

This talk addresses two types of matrices that play an important role in Computer Vision: generalized
essential matrices and sub-Stiefel matrices. We revisit their definition, the most relevant properties and
discuss two related optimization problems of Procrustes-type whose solution involve those matrices.
Effective algorithms for solving such problems are proposed and illustrative examples are provided.

This includes joint work with Pedro Miraldo (University of Lisbon, Portugal) and Krystyna Ziȩtak
(University of Wroclaw, Poland). The speaker acknowledges the funding from Center for Mathematics,
University of Coimbra, Portugal.
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Tridiagonal matrices with two-periodic main diagonal

Mikhail Tyaglov

Shanghai Jiao Tong University

We find the spectrum of an arbitrary irreducible complex tridiagonal matrix with two-periodic main
diagonal provided that the spectrum of the matrix with the same sub- and superdiagonals and zero main
diagonal is known. Our result substantially generalises some of the recent results on the Sylvester-Kac
matrix and its certain main principal submatrix.

This is joint work with Alexander Dyachenko (KIAM).
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MS-21: Tensors for signals and systems

Organisers: Kim Batselier (TU Delft), Philippe Dreesen (KU Leuven) and Bori Hun-
yadi (TU Delft)

Theme: The talks in this minisymposium will revolve around the application of tensor-based
methods on various problems in signal processing, machine learning, and systems and control
theory. The focus of the talks will be specifically on the different applications with the common
thread being the explicit use of different tensor decompositions. Furthermore, we will host a number
of talks on recent theoretical results on existence and uniqueness of tensor approximations.

20 June 14:30 AC215 Borbala Hunyadi p221
Structured Tensor Decompositions in Functional Neuroimaging: Estimating the Hemodynamic Response

20 June 15:00 AC215 Vicente Zarzoso p222
Tensor Decomposition of ECG Records for Persistent Atrial Fibrillation Analysis

20 June 15:30 AC215 Orly Alter p223
Multi-Tensor Decompositions for Personalized Cancer Medicine

20 June 16:00 AC215 Nico Vervliet p224
A quadratically convergent proximal algorithm for nonnegative tensor decomposition

21 June 14:00 AC215 Isabell Lehmann p225
Multi-task fMRI data fusion using Independent Vector Analysis and the PARAFAC2 tensor decomposition

21 June 14:30 AC215 Christos Chatzichristos p226
Early soft and flexible fusion of EEG and fMRI via tensor decompositions for multi-subject group an. . .

21 June 15:00 AC215 Mariya Ishteva p227
Parameter Estimation of Parallel Wiener-Hammerstein Systems by Decoupling their Volterra Representa. . .

21 June 15:30 AC215 Eric Evert p228
Existence of best low rank approximations of positive definite tensors

23 June 10:30 AC214 Kim Batselier p229
Tensor-based methods for large-scale inverse problems in machine learning

23 June 11:00 AC214 Gerwald Lichtenberg p230
Multilinear Modeling for Control and Diagnosis

23 June 11:30 AC214 Jan Decuyper p231
Decoupling multivariate functions using a nonparametric filtered tensor decomposition

23 June 12:00 AC214 Patrick Gelß p232
Tensor-based training of neural networks
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Structured Tensor Decompositions in Functional Neuroimaging: Estimating
the Hemodynamic Response

Borbala Hunyadi

Delft University of Technology

Functional neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or func-
tional ultrasound (fUS) measure brain activity in a noisy and indirect way. Noisy, because they record
a mixture of ongoing brain activity, physiological and non-physiological noise sources. Indirect, because
they pick up the hemodynamic response: the changes in oxygen contentation (fMRI), volume and flow
(fUS) of cerebral blood in response to neuronal activity. More specifically, this response (i.e. the mea-
surement vector) is usually modelled as a convolution of the underlying activity (source vector) and
the so-called hemodynamic response function (HRF). Source separation techniques that can extract the
activity of interest along with the HRF are crucial for correctly interpreting the recorded data. In this
talk, I will illustrate via two applications how tensor decompositions can solve this source separation
problem. In the first application, EEG data simultaneously recorded with fMRI is also available, which
provides information on the unknown source vector. The joint EEG-fMRI decomposition is formulated as
a structured matrix-tensor factorization problem [1]. In the second application only fUS data is available.
To tackle this ill-posed problem, we assume that the sources are uncorrelated. The resulting model -
a convolutive mixture of uncorrelated sources - is formulated as a structured block term decomposition
problem [2]. Both formulations lead to nonconvex optimization problems. I will discuss strategies to
obtain robust results, using relevant constraints, model- and component-selection procedures. Finally,
I will show that the structured tensor decompositions estimate the location (first application) and tim-
ing (second application) of the source of interest as well as the subject- and region-specific HRF in a
biologically meaningful way.
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Tensor Decomposition of ECG Records for Persistent Atrial Fibrillation
Analysis

Vicente Zarzoso

Université Côte d’Azur, CNRS, I3S Laboratory, Sophia Antipolis, France

Considered as the last great frontier of cardiac electrophysiology, atrial fibrillation (AF) is the most
common sustained arrhythmia encountered in clinical practice, responsible for high hospitalization rates
and a significant proportion of brain strokes in the Western world. Analyzing AF electrophysiological
complexity noninvasively requires the extraction of the atrial activity (AA) signal from the electrocar-
diogram (ECG). To perform this task, most approaches including classical average beat subtraction need
sufficiently long ECG records, thus limiting real-time analysis. Linear algebra techniques based on matrix
factorizations can also be used for AA signal estimation by exploiting the spatial diversity of the multi-
lead ECG, but require some constraints to guarantee uniqueness that may lack physiological grounds and
hinder results interpretation.

This talk will review our recent results on multilinear algebra techniques such as tensor decompositions
for noninvasive AA signal extraction in AF ECGs, which guarantee uniqueness under milder constraints
on their factors. Specifically, the block term decomposition (BTD) has been shown to be particularly
suitable to address this biomedical problem, as atrial and ventricular cardiac activity sources can be
modeled by matrices with special structure. The structure of these matrices ensures model uniqueness
while their rank is linked to signal complexity. In this framework, we have put forward the Hankel and
Löwner BTD as AA extraction tools in AF ECG episodes, with validation in a population of persistent
AF patients and several challenging types of ECG segments, including short beat-to-beat intervals and
low-amplitude fibrillatory waves. Accurate AA extraction can be achieved from ECG segments as short as
a single heartbeat. We have also developed a robust computational algorithm — the so-called alternating
group lasso BTD (BTD-AGL) — to simultaneously recover the model structure (number of block terms
and multilinear rank of each term) and the model factors. In addition, tensor modeling allows us to
derive a novel index to quantify AF complexity nonivasively, useful to characterize stepwise catheter
ablation, a first-line therapeutic option for the treatment of persistent forms of the arrhythmia. The
index correlates with the expected decrease in AF complexity over ablation steps and is predictive of AF
recurrence, which presents clear clinical interest.

Joint work with Pedro Marinho R. de Oliveira (BioSerenity, Paris, France) and Lucas Abdalah (Uni-
versidade Federal do Ceará, Fortaleza, Brazil). Work supported by the French government, through the
3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR)
with the reference number ANR-19-P3IA-0002. V. Zarzoso holds the Chair “IAblation” from 3IA Côte
d’Azur.



Mon 20 June, 15:30, AC215 223 MS-21

Multi-Tensor Decompositions for Personalized Cancer Medicine

Orly Alter

Scientific Computing and Imaging Institute and the Huntsman Cancer Institute at the University of Utah

Starting with our invention of the “eigengene,” I will describe the formulation of physics-inspired
multi-tensor generalizations of the singular value decomposition to (i) compare [1, 2, 3] and integrate
any data types, of any number and dimensions, and (ii) scale with data sizes. These models (iii) are
interpretable in terms of known biology and batch effects and (iv) correctly predict [4, 5] previously un-
known mechanisms. By validating a genome-wide pattern of DNA copy-number alterations in brain [6]
tumors as the best predictor of survival, our retrospective clinical trial [7] proved that the models (v)
discover accurate, precise, and actionable genotype-phenotype relationships, (vi) are relevant to popula-
tions based upon whole genomes of small cohorts, and (vii) can be validated. We discovered this, and
patterns in lung [8], nerve, ovarian, and uterine tumors, in public data. Such alterations were recognized
in cancer, yet attempts to associate them with outcome failed, demonstrating that our algorithms are
uniquely suited to personalized medicine.
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A quadratically convergent proximal algorithm for nonnegative tensor
decomposition

Nico Vervliet

KU Leuven

The decomposition of tensors into simple rank-1 terms is key in a variety of applications in signal
processing, data analysis and machine learning. While this canonical polyadic decomposition (CPD)
is unique under mild conditions, including prior knowledge such as nonnegativity of the underlying
factors can facilitate interpretation of the components. Inspired by the effectiveness and efficiency of
Gauss–Newton (GN) for unconstrained CPD, we derive a proximal, semismooth GN type algorithm
for nonnegative tensor factorization. Global convergence to local minima is achieved via backtracking
on the forward-backward envelope function. If the algorithm converges to a global optimum, we show
that Q-quadratic rates are obtained in the exact case. Such fast rates are verified experimentally, and
we illustrate that using the GN step significantly reduces number of (expensive) gradient computations
compared to proximal gradient descent.

This is joint work with Andreas Themelis (Kyushu University, Japan), Panagiotis Patrinos (KU Leu-
ven, Belgium) and Lieven De Lathauwer (KU Leuven, Belgium). This work was supported by the Research
Foundation Flanders (FWO) via projects G086518N, G086318N, and via postdoc grant 12ZM220N; KU
Leuven Internal Funds via projects C14/18/068, C16/15/059, and IDN/19/014; Fonds de la Recherche
Scientifique—FNRS and the Fonds Wetenschappelijk Onderzoek— Vlaanderen under EOS project No.
30468160 (SeLMA). This research received funding from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” program.
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Multi-task fMRI data fusion using Independent Vector Analysis and the
PARAFAC2 tensor decomposition

Isabell Lehmann

Paderborn University, Germany

The interest in data fusion, i.e., the joint analysis of multiple related datasets, has grown in recent
years in various research areas, in particular, in biomedicine. Data-driven methods, especially methods
based on joint matrix/tensor factorizations, have shown to be effective for data fusion [1]. Two of them are
Independent Vector Analysis (IVA) and PARAFAC2. IVA [2] is an extension of Independent Component
Analysis (ICA) to multiple datasets, and a good candidate for data fusion because it makes use of the
dependence across datasets. The PARAFAC2 model [3] also has proved useful for jointly analyzing
datasets as a more flexible version of the well-known CANDECOMP/PARAFAC tensor method.

With the goal of identifying novel biomarkers for complex neurological disorders, fusion of medical
imaging data has received particular attention. Especially important is multi-task functional Magnetic
Resonance Imaging (fMRI) data, i.e., data collected from the same subjects while they are performing
different tasks. Since different tasks provide complementary information about the brain, analyzing the
joint information between tasks may help to better understand these disorders.

In this talk, we study IVA and PARAFAC2 for data fusion [4], first through simulations, where
multiple datasets in the form of subjects by voxels matrices correspond to different tasks. Our simulations
reveal that both methods can accurately capture the underlying latent components, albeit with certain
differences in capturing the corresponding subject scores. We then apply both methods for the analysis
of 13 fMRI datasets from the MCIC collection [5], collected from 271 subjects that perform 3 different
tasks with well-defined relationship among them. Both methods are able to achieve two important goals
at once, namely capturing group differences between patients with schizophrenia and healthy controls
with interpretable components, as well as understanding the relationship across the tasks.

This is joint work with Evrim Acar (Simulamet, Norway), Tanuj Hasija (Paderborn University),
M.A.B.S. Akhonda (UMBC), Vince D. Calhoun (TReNDS Center), Peter J. Schreier (Paderborn Uni-
versity), and Tülay Adali (UMBC).

This work was supported in part by NSF grants CCF 1618551, NCS 1631838 and NIH grants R01MH123610
and R01MH118695, the RCN project 300489, and the DFG grant SCHR 1384/3-2. The used hardware
is part of the UMBC HPCF.
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Early soft and flexible fusion of EEG and fMRI via tensor decompositions for
multi-subject group analysis

Christos Chatzichristos

KU Leuven, Biomed, Stadius, Belgium and Janssen Pharmaceutica, JCI, Beerse, Belgium

Data fusion refers to the joint analysis of multiple datasets that provide different (e.g., complemen-
tary) views of the same task. In general, it can extract more information than separate analyses can.
Jointly analyzing EEG and fMRI measurements has been proved to be highly beneficial to the study of
the brain function, mainly because these neuroimaging modalities have complementary spatio-temporal
resolution[1]: EEG offers good temporal resolution while fMRI is better in its spatial resolution. The
EEG-fMRI fusion methods that have been reported so far ignore the underlying multi-way nature of
the data in at least one of the modalities and/or rely on very strong assumptions concerning the rela-
tion of the respective datasets. For example, in multi-subject analysis it is commonly assumed that the
Haemodynamic Response Function (HRF) is a-priori known for all subjects and/or the coupling across
corresponding modes is assumed to be exact (hard). In this paper, these two limitations are overcome
by adopting tensor models for both modalities and by following soft[2] (i.e., not hard) and flexible (i.e.,
possibly varying HRFs based on preselected family of models)[3] coupling approaches to implement the
multi-modal fusion. The obtained results are compared against those of parallel Independent Component
Analysis (ICA) and hard coupling alternatives, with both synthetic and real data (epilepsy and visual
oddball paradigm). Our results demonstrate the clear advantage of using soft and flexible coupled tensor
decompositions in scenarios that do not conform with the hard coupling assumption.

This is joint work with Eleftherios Kofidis (University of Piraeus), Simon Van Eyndhovem (Icometrix),
Wim Van Paesschen (UZ Leuven), Lieven De Lathauwer (KU Leuven), Sergios Theodoridis (Aalborg Uni-
versity) and Sabine Van Huffel (KU Leuven). Supported by the European Union’s 7th Framework Program
under the ERC Advanced Grant: BIOTENSORS (n◦ 339804).
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Parameter Estimation of Parallel Wiener-Hammerstein Systems by Decoupling
their Volterra Representations

Mariya Ishteva

KU Leuven

Nonlinear dynamic systems are often modelled by a Volterra series (a generalization of the Taylor
series). Unfortunately, the Volterra series lacks physical interpretation. To take advantage of the Volterra
representation while aiming for an interpretable block-oriented model, we establish a link between the
Volterra representation and the parallel Wiener-Hammerstein model. This link is based on decoupling
of multivariate polynomials with (block-)Toeplitz structure on the factors and sets of identical internal
branches.

The solution of the constrained decoupling problem reveals directly the parameters of the parallel
Wiener-Hammerstein model of the system. However, imposing these constraints requires significant
modification of the decoupling problem. Luckily, due to the uniqueness properties of the plain decoupling
algorithm, even if the structure is not imposed, the method still leads to the true solution (in the exact
case).

This is joint work with Philippe Dreesen (KU Leuven). Supported by KU Leuven Research Fund; FWO
(EOS Project 30468160 (SeLMA), SBO project S005319N, Infrastructure project I013218N, TBM Project
T001919N, G028015N, G090117N, SB/1SA1319N, SB/1S93918, SB/151622); Flemish Government (AI
Research Program); European Research Council under the European Union’s Horizon 2020 research and
innovation programme (ERC AdG grant 885682), KU Leuven start-up-grant STG/19/036 ZKD7924. PD
is affiliated to Leuven.AI - KU Leuven institute for AI, Leuven, Belgium.
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Existence of best low rank approximations of positive definite tensors

Eric Evert

KU Leuven

Tensors, or multiindexed arrays, play an important role in fields such as machine learning and signal
processing. These higher-order generalizations of matrices allow for preservation of higher-order structure
present in data, and low rank decompositions of tensors allow for recovery of underlying information. In
many cases, e.g., in blind source separation or diffusion tensor imaging, the underlying tensor of interest
is positive (semi)definite. That is, the homogeneous polynomial associated to the tensor has nonnegative
evaluation on all inputs.

An archetypal problem is that one has a noisy measurement of some low rank signal tensor of interest.
This measurement itself does not have low rank, so one must compute a best low rank CPD approximation
of the measured tensor. As it turns out, the set of tensors of rank less than or equal to R is in general
not closed when R > 1, and, as a consequence, best low rank approximations can fail to exist. In the
case that a best low rank approximation does not exist, near optimal low rank approximations suffer
numerical issues and cannot be used to reliably approximate underlying component information. As a
consequence, existence guarantees for best low rank tensor approximations are of great practical and
theoretical interest.

This talk will give deterministic guarantees for the existence best low rank approximations of tensors
which are positive semidefinite. In particular, we show that the set of low rank positive semidefinite
tensors is relatively closed as a subset of the set of positive semidefinite tensors. We use this fact to give
a deterministic bound which may be used to guarantee the existence of a best low rank approximation
of a noisy low rank positive semidefinite tensor. In addition, for order three tensors, we prove that our
bound is sharp and that it can be computed using semidefinite programming.

This is joint work with Lieven De Lathauwer (KU Leuven). Supported by: (1) Flemish Government:
This work was supported by the Fonds de la Recherche Scientifique–FNRS and the Fonds Wetenschap-
pelijk Onderzoek–Vlaanderen under EOS Project no 30468160 (SeLMA); (2) KU Leuven Internal Funds
C16/15/059 and ID-N project no 3E190402. (3) This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme. (4) Work
supported by Leuven Institute for Artificial Intelligence (Leuven.ai).
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Tensor-based methods for large-scale inverse problems in machine learning

Kim Batselier

Delft University of Technology

Large-scale linear inverse problems appear in myriads of applications ranging from astronomy to
medicine[1, 2, 3, 4]. In this talk I will address a large-scale inverse problem that is known in the machine
learning community as learning a kernel machine[5]. The same problem is also known in the control
engineering community as nonlinear system identification [6]. First, I will discuss the forward model and
highlight its inherent tensorial structure. This tensorial structure is the result from building multivariate
basis functions as tensor products of univariate basis functions. Then, I will discuss how this structure
can be exploited using tensor decompositions to enable efficient solving of large-scale inverse problems.
The power of these tensor-based methods will be demonstrated in a live demo, where I will invert a dense
square matrix of order 67 million on a standard laptop in about 5 seconds.
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Multilinear Modeling for Control and Diagnosis

Gerwald Lichtenberg

University of Applied Sciences Hamburg

Many engineering applications in the area of controller design and fault diagnosis are based on linear
models. This enables the use of efficient linear algebra algorithms as long as the systems behavior is - at
least approximative - linear. But if larger deviations from operating points have to be considered, the
engineering goals might not be achievable by linear models and the corresponding methods.

Nonlinear models are in principle able to overcome this. But they come in general with severe draw-
backs due to their complexity: e.g. higher and unpredictable computation times as well as nonconvexity of
underlying optimization problems. Moreover, model representations depend on the tools of information
technology and not on abstract mathematical standards as the system, input, output and feedthrough
matrices in linear system theory. The latter is mainly caused by the requirement that all kinds of
nonlinearities should be representable.

But, as the system dynamics in several application areas as HVAC systems or power networks are
intrinsically multilinear or can be multilinearized, their behaviour can be described appropriately by
multilinear models, [1, 2]. Moreover, the parameters of multilinear time-invariant (MTI) models are
tensors - which naturally extend parameter matrices of state space models for linear time-invariant (LTI)
models. Explict multilinear models can be represented by full or decomposed tensors, which enable
standardized formats finally leading to efficient as well as generic algorithms for simulation, controller
design, and fault diagnosis.

One of the main obstacles of the explict MTI modeling approach is the non-closedness of the MTI
class w.r.t. series and feedback compositions. Recent results will be presented, which show how this can
be overcome by implict MTI models [3]. The usage of these models, e.g. at the Fraunhofer Application
Center for Integration of Local Energy Systems (ILES) for large scale energy systems will be presented.

This is joint work with Georg Pangalos, Leona Schnelle, Carlos Cateriano Yáñez, Aline Luxa,
Torben Warnecke, Niklas Jöres, Christoph Kaufmann and Aadithyan Sridharan supported by grants
13FH144PA8, 13FH1I05IA and 01LY1812B from the Federal Ministry of Education and Research Ger-
many as well as the Free and Hanseatic city of Hamburg.
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Decoupling multivariate functions using a nonparametric filtered tensor
decomposition

Jan Decuyper

FLOW research group, Engineering Technology, Vrije Universiteit Brussel

This work deals with the problem of function decoupling. Function decoupling is the process of
approximating a multivariate real function f(p) : Rm 7→ Rn, e.g. a neural network or multivariate poly-
nomial, with a so-called decoupled form, fd(p) := Wg

(
V >p

)
, i.e. an additive structure built up out of

univariate functions gi(zi) : R 7→ R of linear forms zi := v>i p, with i = 1, . . . , r. The decoupled represen-
tation is often preferred given that it may result in a more efficient parameterisation, while additionally
favouring explainability through the use of tractable univariate functions gi. The functions gi may be
seen as tailored activation functions, characteristic of the underlying relationship. The approximation
problem is solved using a numerical approach. The objective then assumes the form:

arg min
W ,V ,gi∈G

1

N

N∑
k=1

‖f(p(k))− fd(k)‖22 , (9)

i.e. a distance measure based on a selection of operating points {p(k)}Nk=1, and with G a predefined func-
tion family. A direct approach to (9) would, however, result in a hard nonlinear optimisation problem.
Moreover, it would require predefining the function family G, which may be non-trivial. These issues
are mitigated in this presentation by introducing the process of decoupling based on filtered tensor de-
composition [1]. Reformulating the objective at the level of the Jacobian allows framing the problem as
a diagonal tensor decomposition [2], resulting in a number of advantages: 1) Exploiting a smoothness
promoting penalty term, based on finite difference filters, enables retrieving meaningful decoupled func-
tions, irrespective of the uniqueness properties of the decomposition. 2) An additional advantage is that
the procedure is nonparametric, meaning that no a priori assumptions on the functional family of g are
required. The method finds direct applications in machine learning where it can be used to increase the
explainability of algorithms, e.g. by shedding light on the decision logic. Additionally, also the field of
nonlinear system identification can benefit from decoupling techniques. Nonlinear black-box models are
known to suffer from large numbers of parameters, while providing little to no insight into the underlying
relationship. Decoupling can in those cases be used as a tool to retrieve parts of the underlying physics,
as was demonstrated in [3].
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Tensor-based training of neural networks

Patrick Gelß

Freie Universität Berlin

The interest in machine learning with tensor networks has been growing rapidly in the past years. In
this talk, we will discuss recently proposed tensor-based approaches for learning governing equations and
image classification such as MANDy [1] and ARR [2]. The insights gained from these methods are used to
develop a novel approach for training shallow neural networks. We show how the functional tensor-train
format and Tikhonov regularization can be used to approximate solutions of Fredholm integral equations
which describe infinitely large hidden layers. The efficiency and reliability of the introduced approach is
illustrated with the aid of numerical experiments.

This is joint work with Aizhan Issagali, Carsten Gräser, and Ralf Kornhuber (FU Berlin).
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The dual code of points and lines in a projective plane

Geertrui Van de Voorde

University of Canterbury

The code C(Π) of points and lines in a projective plane Π of order q, q = ph, p prime, is the Fp-
vector space generated by incidence matrix of points versus lines. The parameters of this code have been
studied since the 1970’s, in particular, the minimum weight is known, and the dimension is known in the
Desarguesian case.

The dual code C(Π)⊥ is the orthogonal complement (with respect to the standard dot product on Fp)
of the code C(Π). Its minimum weight is not known in general. Even in the Desarguesian case, only the
cases q even and q prime have been tackled.

In this talk, we will focus on the case q = p2 and link codewords of certain small weights to the
existence of embedded subplanes and antipodal planes. In the Desarguesian case we derive a non-
embeddability results. Together with more combinatorial arguments, this allows us the improve on
the currently best known lower bound for the minimum weight.

This is joint work with Maarten De Boeck (University of Rijeka, Croatia). Supported by the Marsden
Fund Council, administered by the Royal Society of New Zealand, Grant MFP-UOC1805.
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Cyclic line-spreads and flag-transitive linear Spaces

Cian Jameson

University College Dublin

There has been much progress towards classifying linear spaces that have a flag-transitive automor-
phism group in recent decades. However, a complete classification is not available as the case in which
the automorphism group is a subgroup of one-dimensional affine transformations remains open.

In a 2007 paper [1], Pauley and Bamberg constructed flag-transitive linear spaces that lie in the open
case via spreads and provided a condition for such spreads to exist. This condition links the existence of
these flag-transitive linear spaces with polynomials.

In this talk, I will present my work on describing the polynomials that give rise to the desired
linear spaces. I will provide conditions for binomials and cubic polynomials, as well as some results on
equivalence of the resulting linear spaces.

This is joint work with my PhD supervisor John Sheekey (University College Dublin).
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Codes over finite fields and Galois ring valued quadratic forms

Ignacio F. Rúa

University of Oviedo (Spain)

In this talk we will address the construction of codes over finite fields from Galois ring valued quadratic
forms.

This is joint work with Alejandro Piñera Nicolás (University of Oviedo). Supported by the Spanish
MINECO, under Grant MTM-2017-83506-C2- 2-P.
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Linearized Polynomials and Galois Groups

Gary McGuire

University College Dublin

Linearized polynomials have many applications in coding theory. We will discuss the Galois group G
of a linearized polynomial over a field F of characteristic p, considered as a subgroup of GLn(F ). This
leads naturally to some representations of G over Fp, and we mention some of the FpG modules that
arise. We also discuss Galois groups of projective polynomials.

This is joint work with Rod Gow (UCD).
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Dynamic Proofs of Retrievability and Verified Evaluation of Secret
Dotproducts and Polynomials

Jean-Guillaume Dumas

Université Grenoble Alpess, umr CNRS 5224, LJK, 38000 Grenoble, France

We consider the problem of efficiently evaluating a secret polynomial at a given public point over a
finite field, when the polynomial is stored on an untrusted server.

The server performs the evaluation and returns a certificate, and the client can efficiently check that
the evaluation is correct using some pre-computed keys. Our protocols support two important features:
the polynomial itself can be encrypted on the server, and it can be dynamically updated by changing
individual coefficients cheaply without redoing the entire setup. Our technique can also be used similarly
for the verified computation of a dotproduct by a server where one of the vector remains secret.

Our methods rely only on linearly homomorphic encryption and pairings. Still we provide experiments
showing that our client verification can be orders of magnitude faster than re-computation.

As an important application, we show how these new techniques can be used to instantiate a Dynamic
Proof of Retrievability (DPoR) for arbitrary outsourced data storage that achieves both low server storage
size and audit complexity. Indeed, PoRs are protocols which allow a client to store data remotely and
to efficiently ensure, via audits, that the entirety of that data is still intact. A dynamic PoR system also
supports efficient retrieval and update of any small portion of the data.

We propose new and simple protocols for dynamic PoR where the audits are based on verifiable
linear and polynomial algebra computations over finite fields. Again, our protocols are designed for
practical efficiency, trading decreased persistent storage for increased server computation. They are the
first dynamic PoR which do not require any special encoding of the data stored on the server, meaning
it can be trivially composed with any database service or with existing techniques for encryption or
redundancy. We also present several further enhancements, reducing the amount of client storage, or
the communication bandwidth, or allowing public verifiability, wherein any untrusted third party may
conduct an audit.

Our implementation and deployment on Google Cloud Platform demonstrates our solution is scalable:
for example, auditing a 1TB file takes just less than 5 minutes and costs less than $0.08 USD.

This is joint work with Aude Maignan (Univ. Grenoble Alpes), Clément Pernet (Univ. Grenoble
Alpes) and Daniel S. Roche (US Naval academy).
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One-Shot Capacity of Networks with Restricted Adversaries

Altan Berdan Kılıç

Eindhoven University of Technology

In this talk, we will concentrate on the one-shot capacity of communication networks with an adversary
who can possibly corrupt only a proper subset of network edges. That is, we are interested in computing
the maximum number of information symbols that can be sent in a single use of the network, no matter
how the adversary acts. We show that linear network coding does not suffice in general to achieve
capacity, proving a strong separation result between the one-shot capacity and its linear version and
contrasting this with the classical network coding setting where the adversary is not restricted. We then
give a general method to obtain upper bounds on the said capacity by studying some induced networks
with only two levels of vertices.

This is joint work with Allison Beemer and Alberto Ravagnani. Supported by the Dutch Research
Council, Grant VI.Vidi.203.045.
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On Cameron-Liebler sets in projective spaces, and low degree Boolean
functions

Jan De Beule

Vrije Universiteit Brussel

Let PG(n, q) denote the n-dimensional projective space over the finite field Fq. We assume n ≥ 3. Let
0 ≤ d < k < n, and let A be the d-space-k-space incidence matrix, i.e. the rows of A = (aij) are indexed
by the d-dimensional subspaces of PG(n, q), the columns by the k-dimensional subspaces PG(n, q) and
aπ,σ = 1 if and only if π ⊂ σ and aπ,σ = 0 otherwise.

Let d = 0. A Cameron-Liebler set of k-spaces is a set C of k-spaces such that the characteristic vector
χC ∈ Im(AT ). These objects are natural generalizations of Cameron-Liebler line classes (k = 1 in the
definition), which where introduced by Cameron and Liebler to study irreducible collineation groups in
PG(n, q) having equally many orbits on the points as on the lines.

These objects are well studied in their geometrical context. In this talk, first we summarize old and
recent results, including equivalent characterizations, non-existence conditions, and non-trivial examples,
all for k = 1. Then we present recently obtained existence conditions for k > 1. Finally we also
discuss the connection between Cameron-Liebler sets of k-spaces and Boolean functions of degree 1, and
a geometrical approach to construct Boolean degree functions of low degree d > 1.

This is joint work with Jozefien D’haeseleer (Ghent University), Ferdinand Ihringer (Ghent Univer-
sity), Jonathan Mannaert (Vrije Universiteit Brussel), and Leo Storme (Ghent University)
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Trifferent codes and affine blocking sets

Anurag Bishnoi

TU Delft

Trifferent codes, also known as perfect 3-hash codes, are subsets of C of {0, 1, 2}n such that for any
three distinct codewords in C, there is a common coordinate position where all of these codewords have
different values. When {0, 1, 2} is identified with F3 and C is a linear subspace of Fn3 , then it is called a
linear trifferent code. Studying the maximum possible size of trifferent codes of length n, as a function
of n, is one of the classic open problems in both coding theory and extremal combinatorics. The trivial
upper bound of c

(
3
2

)n
has not been improved despite considerable effort, except for improvements in the

constant c. The best known lower bound is also exponential but with a smaller base of the exponent.
Recently, Pohoata and Zakharaov studied linear trifferent codes and showed a much stronger upper
bound on their size, compared to trifferent codes. In this talk we will present further improvements
to their upper bound and new exponential lower bounds. We also propose a natural problem in finite
geometry, where explicit constructions can potentially lead to the best known explicit lower bounds on
(not necessarily linear) trifferent codes.

This is joint work with Dion Gijswijt, Jozefien D’haesleer and Aditya Potukuchi.
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Independent Spaces of q-Polymatroids

Heide Gluesing-Luerssen

University of Kentucky

It is well known that Fqm-linear rank-metric codes in Fnqm give rise to q-matroids while the more general
Fq-linear rank-metric codes in Fn×mq lead to q-polymatroids [4, 5]. The latter differ from q-matroids in
that the rank function may assume rational values. Just like for (classical) matroids and polymatroids,
this generality of the rank function has vast consequences for the theory of q-polymatroids. While for
q-matroids a variety of cryptomorphic descriptions have been established [1], little is known so far for
q-polymatroids.

In this talk we introduce, for any common denominator µ of the rank function, a notion of µ-
independent spaces for q-polymatroids. With the aid of an auxiliary q-matroid, we establish properties
of the collection of µ-independent spaces that resemble those for q-matroids. This allows us to show
that the entire q-polymatroid is fully determined by the collection of µ-independent spaces along with
their rank values, and one arrives at a cryptomorphism of q-polymatroids based on independent spaces.
Examples show that no such cryptomorphism is possible using only bases, dependent spaces, or circuits
(along with their rank values). This is based on joint work with Benjamin Jany [2, 3].

Supported by Simons Foundation Grant 422479.
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Rank-Metric Lattices

Giuseppe Cotardo

University College Dublin

Higher-Weight Dowling Lattices (HWDL in short) are special families of geometric lattices introduced
by Dowling [3] in connection with coding theory. These lattices were further studied, among others, by
Bonin [1, 2], Kung [4], and more recently by Ravagnani [5]. The elements of HWDLs are the Fq-linear
subspaces of Fnq having a basis of vectors with Hamming weight bounded from above, ordered by inclusion.

In this talk, we define and investigate structural properties of the q-analogues of HWDLs, which we
call rank-metric lattices (RML in short). Their elements are the Fqm-linear subspaces of Fnqm having a
basis of vectors with rank weight bounded from above, ordered by inclusion. We determine which RMLs
are supersolvable, computing their characteristic polynomials. In the second part of the talk, we establish
a connection between RMLs and the problem of distinguishing between inequivalent rank-metric codes.

The new results in this talk are joint work with A. Ravagnani (Eindhoven University of Technology).
Supported by the Irish Research Council, grant n. GOIPG/2018/2534.
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MRD Codes and the Average Critical Problem

Anina Gruica

Eindhoven University of Technology

This talk will be about two problems intersecting coding theory and combinatorial geometry, where
the focus lies on their relationship. These are the problem of computing the asymptotic density of MRD
codes in the rank metric, and the Critical Problem by Crapo and Rota.

While it is known that MRD codes are generally sparse within the set of codes of the same dimension
for q large, computing the exact asymptotic behavior of their density is still a wide open question. A
natural step towards solving this problem is to obtain lower bounds on their number. I will show how
the theory of semifields can be used to get a lower bound for the number of full-rank, square MRD codes.
This lower bound is tight when n is prime and q is large, which gives a closed formula for their density
function.

In the second part of the talk, I will focus on the Critical Problem for combinatorial geometries,
approaching it from a different (more qualitative, often asymptotic) viewpoint. Finally, I will present the
connection between this very classical problem and that of computing the asymptotic density of MRD
codes.

This is joint work with Alberto Ravagnani, John Sheekey and Ferdinando Zullo. My research is
supported by the Dutch Research Council through grant OCENW.KLEIN.539.
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From linear to non-linear functions over finite fields

Ferdinando Zullo

Università degli Studi della Campania “Luigi Vanvitelli”

Let F2n be the finite field with 2n elements. Given a function f : F2n → F2n , it is interesting to
understand how many solutions x the equation

f(x+ a) + f(x) = b (10)

has, for any a ∈ F2n \ {0} and b ∈ F2n . A function f is said to be almost perfect nonlinear (APN) if
there are always exactly zero or two solutions to (10).

APN functions were introduced by Nyberg in 1993, in the context of cryptography, as the mappings
with highest resistance to differential cryptanalysis. Since then they appeared in several contexts, such
as for the construction of semi-biplanes, dual-hyperovals and linear codes.

In this talk we consider the new family of quadratic APN functions, recently introduced in [2], that
generalizes the one by Bracken, Byrne, Markin and McGuire in 2011. Let s and m be integers such that
gcd(s,m) = 1. The mapping defined over F23m

(x2
m+s

+ µx2
s

+ x)2
m+1 + vx2

m+1, (11)

where µ ∈ F23m satisfies N23m/2m(µ) := µ2
2m+2m+1 6= 1 and v ∈ F∗2m , is APN whenever f

(s)
µ (x) :=

x2
m+s

+ µx2
s

+ x permutes F23m .

In [1], we proved the existence for all m ≥ 3 of suitable s and µ, N23m/2m(µ) 6= 1, for which the
polynomial (11) is APN. A key tool in our machinery is the investigation of the kernel of 2-linearized

polynomials (that is F2-linear maps of F23m) of the type f
(s)
µ (x) := x2

m+s
+ µx2

s
+ x ∈ F23m [x], which

belong to a family of linearized polynomials already investigated in [3].

This is joint work with Daniele Bartoli (Università degli Studi di Perugia), Marco Calderini (Univer-
sità degli Studi di Trento) and Olga Polverino (Università degli Studi della Campania “Luigi Vanvitelli”).
Supported by the project “VALERE: VAnviteLli pEr la RicErca” of the University of Campania “Luigi
Vanvitelli” and was partially supported by the Italian National Group for Algebraic and Geometric Struc-
tures and their Applications (GNSAGA - INdAM).
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Monge-like properties in the interval setting

22 June 11:30 AC204 Matyáš Lorenc p279
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Blocked Triangular Patterns and their Symmetry Groups

James R. Weaver

University of West Florida

A 2n × 2n matrix partitioned into n × n blocks is called a triangular pattern if the entry pattern of
each block is one of the triangles determined by the main diagonal or anti-diagonal. The dihedral group
of order 8, D4(8), realized as a subgroup of the group S2n of 2n× 2n blocked permutation matrices, acts
via conjugation on the set of triangular patterns ∆. Patterns P and Q in ∆ are D4(8)-equivalent if there
is a permutation Φ ∈ D4(8) such that ΦPΦT = Q. The objective of this paper is to examine the action
of D4(8) on ∆. Of particular interest are the orbits of this group action, and certain other subgroups of
S2n associated with D4(8).

This is joint work with James E. Brewer and Rohan Hemasinha.



Mon 20 June, 11:30, AC203 251 Contrib. 1

Majorization and Triangular Polynomial Matrices

Richard Hollister

University at Buffalo

Majorization is a partial ordering of Rn with numerous applications across many areas of study, [2, 4].
This classical concept can trace its origins back to an equivalent ordering given by Muirhead in 1903, [5].
In this talk, we discuss recent work highlighting the connection between majorization and the diagonals
of triangular matrix polynomials. The question being addressed was first considered in the PhD thesis of
Eduardo Marques de Sá, [3]: which polynomial diagonals are possible in a triangular realization of a given
Smith form? The current work answers the same question, but in a conceptually and computationally
simpler way using majorization. The end result is an implementable algorithm that can be used to
compute such a triangular realization.

This work relates to research investigating the triangularization of matrix polynomials. It was shown
in [6] that every regular matrix polynomial over an algebaically closed field can be triangularized. In
more recent work by Anguas, Dopico, Hollister, and Mackey, it was shown that every regular matrix over
an arbitrary field can be quasi-triangularized with diagonal blocks having bounded sizes, [1]. The role
that majorization plays in these results is also discussed.

This is joint work with Luis Miguel Anguas (Universidad Politécnica de Madrid), Froilán Dopico
(Universidad Carlos III de Madrid), and D. Steven Mackey (Western Michigan University). Supported
by “Proyecto de I+D+i PID2019-106362GB-I00 financiado por MCIN/AEI/10.13039/501100011033”
and “Ministerio de Economı́a, Industria y Competitividad (MINECO)” of Spain through grants MTM-
2015-65798-P and BES-2013-065688.
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Spectral Localization in Polynomial and Rational Matrices

D. Steven Mackey

Western Michigan University

Let P (λ) be any polynomial matrix over an arbitrary field F, and q(λ) a monic irreducible scalar
polynomial over F. Define Locq(P ), the “localization of P at q”, to be the polynomial matrix with the
same zero entries as P (λ), but with each nonzero entry pij(λ) of P (λ) replaced by a power of q, in
particular by qeij (λ) where pij(λ) = qeij (λ)r(λ) with r coprime to q, and eij ≥ 0. Note that if Smith(P )
is the Smith form of P , then Locq

(
Smith(P )

)
is often referred to as the “local Smith form of P at q”,

since it displays all of the elementary divisors of P at q, and nothing else about the spectral structure of
P .

Now for anything other than diagonal matrices, it would at first sight seem crazy to think that the
elementary divisors of the drastically simplified matrix Locq(P ) would have anything at all to do with
the elementary divisors of P at q, let alone be exactly the same. In other words, to think that

Smith
(
Locq(P )

)
= Locq

(
Smith(P )

)
(12)

could possibly be true. But there is in fact a substantial class of non-diagonal polynomial matrices P for
which the relation (12) does hold, indeed holds for all monic irreducible q. For example, all bidiagonal
polynomial matrices have this property, which I will refer to as the spectral localization property.

This talk will discuss some of the basic results concerning the spectral localization property, and
describe how to build many examples of polynomial matrices that possess it. As time permits, I will also
indicate how these results can be used to help design polynomial matrices with specified finite and infinite
elementary divisors, and how to extend these results to rational matrices, using the Smith-McMillan form
in place of the Smith form.
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Circular higher rank numerical range and factorization of singular matrix
polynomials

Edward Poon

Embry-Riddle Aeronautical University

Abstract: The rank-k numerical range of a square matrix A is the set of complex numbers λ for
which there exists an orthogonal rank-k projection P such that PAP = λP . We present conditions
which guarantee that such a higher rank numerical range is a circular disk. Our results generalize
Anderson’s Theorem [1], and are in turn generalized to provide factorizations of singular Hermitian-
valued trigonometric polynomials on the unit circle.

This is joint work with Ilya Spitkovsky (NYUAD) and Hugo Woerdeman (Drexel).
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New Connections between Static Matrices A, Zhang Neural Networks, and
Parameter-Varying Matrix Flows A(t)

Frank Uhlig

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5310, USA

We study recent results that connect classical matrix theory with matrix computations in new ways.

Field of values computations lead me to study parameter-varying matrix eigenvalue problems. These
concepts helped me solve a century old matrix block diagonalization problem that arose in Quantum
Physics in the 1920s and was still open.

On the way we need to understand time-varying matrix problems theoretically and computationally
when specifically approached through Zeroing Neural Networks.

Zhang Neural Networks (ZNN) are being used today in hundreds of ways in modern engineering, in
robot control etc.

But their numerical behavior is barely understood at this time. ZNN methods pose many open
problems and form a new, non-Wilkinsonian branch of Numerical Matrix Analysis.

In return, ZNN methods for matrix flows A(t) can help us for the first time to solve long standing
intractable computational problems of fixed entry matrices A such as the matrix symmetrizer problem.
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A characterization of signed graphs with stable maximum nullity at most two

Marina Arav

Georgia State University

A signed graph is a pair (G,Σ) where G is an undirected graph (we allow parallel edges but no loops)
and Σ ⊆ E(G). If (G,Σ) is a signed graph with vertex-set V = {1, . . . , n}, S(G,Σ) is the set of all n× n
real symmetric matrices A = [ai,j ] with ai,j > 0 if i and j are adjacent and connected by only odd edges,
ai,j < 0 if i and j are adjacent and connected by only even edges, ai,j ∈ R if i and j are adjacent and
connected by both even and odd edges, ai,j = 0 if i and j are not adjacent, and ai,i ∈ R for all vertices i.
The parameter ξ(G,Σ) is defined as the largest nullity of any matrix A ∈ S(G,Σ) satisfying the Strong
Arnold Property. This invariant is closed under taking minors. In 2021, Arav, Hall, van der Holst, and
Li gave a characterization of 2-connected signed graphs (G,Σ) with ξ(G,Σ) ≤ 2. A full characterization
was still open. In this talk, we discuss a full characterization of signed graphs (G,Σ) with ξ(G,Σ) ≤ 2.

This is joint work with F. Scott Dahlgren (Georgia State University) and Hein van der Holst (Georgia
State University).
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Null-Space Projects for Intermediate Students: Tomography, Cryptography,
and More

Tom Asaki

Washington State University

For many students, a non-trivial nullspace is a “necessary evil” associated with a non-injective linear
transformation, T : Rn → Rm. They understand that such transformations are not invertible, but
strategies, such as least squares methods and pseudo-inversion via singular value decomposition, are
designed to avoid nullspace contributions using approximate inverse transformations, P : Rm → Rn. And,
theorems even demonstrate that these methods represent best strategies, in that, recovered domain-space
vectors are optimal. That is, if T (x) = b and x̂ = P (T (x)), then ‖x̂− x‖2 is minimized over all possible
linear transformations P . In this work we describe improved pseudo-inversion methods that directly
incorporate nullspace vectors along with both actual and introduced prior knowledge. We provide two
examples suitable for curious students who wish more than nullspace avoidance. These examples provide
a springboard for additional project directions.

One project concept is improved tomographic reconstructions from radiographs. The radiographic
(approximate) linear transformation typically has a very large nullspace n � m. Any pseudo-inverse
transformation typically results in a reconstruction which is unacceptable without extensive post-processing.
We invite the student to use reasonable prior knowledge, such as accepting values from a given set, to
find null vector contributions which enhance the result. In many cases, dramatic improvement is realized,
up to and including exact reconstructions.

A second project concept is the sending and deciphering of encrypted messages. A message encrypted
using a non-injective transformation is not simply recovered because of the loss of information. However,
with the introduction of an intertwined and simultaneously encrypted passphrase, the correct nullspace
contribution can be recovered. The transformation and encrypted message can be made public, while
the private passphrase in known only to the sender and intended receiver.
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A topological characterization of signed graphs with stable positive
semidefinite maximum nullity at most two

Hein van der Holst

Georgia State University

A signed graph is a pair (G,Σ), where G is an undirected graph (we allow parallel edges but no
loops) and Σ ⊆ E(G). The edges in Σ are called odd, while the other edges are called even. If (G,Σ)
is a signed graph with vertex-set V = {1, . . . , n}, S(G,Σ) is the set of all real symmetric n× n matrices
A = [ai,j ] with ai,j > 0 if i and j are adjacent and connected by only odd edges, ai,j < 0 if i and j are
adjacent and connected by only even edges, ai,j ∈ R if i and j are adjacent and connected by both even
and odd edges, ai,j = 0 if i and j are not adjacent, and ai,i ∈ R for all vertices i. The parameter ν(G,Σ)
is defined as the largest nullity of any positive semidefinite matrix A ∈ S(G,Σ) satisfying the Strong
Arnold Hypothesis. This invariant is closed under taking minors. Arav, Hall, van der Holst, and Li gave
a forbidden minor characterization of the class of signed graphs (G,Σ) with ν(G,Σ) ≤ 2. In this talk we
present a topological characterization of the class of signed graphs (G,Σ) with ν(G,Σ) ≤ 2.
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Inverse of a signless Laplacian matrix of a non-bipartite graph

Milica Andelić

Department of Mathematics, Kuwait University, Kuwait

We provide a relation between the Moore-Penrose inverse of the Laplacian and signless Laplacian
matrices of a bipartite graph. As a consequence we present combinatorial formulae for the Moore-
Penrose inverse of signless Laplacians of bipartite graphs. We also obtain a combinatorial formula for
the Moore-Penrose inverse of an incidence matrix and derive a combinatorial formula for the inverse of
signless Laplacians of non-bipartite graphs. These results answer some of the open problems raised in
[R. Hessert, S. Mallik, Moore-Penrose inverses of the signless Laplacian and edge-Laplacian of graphs,
Discrete Math. 344 (2021) #112451].

This is joint work with Abdullah Alazemi (Kuwait University) and Osama Alhalabi (Kuwait Univer-
sity), supported by the Research Sector, Kuwait University, Grant SM01/19.
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Graph addition: properties for its use for graph protection

Vicenç Torra

Ume̊a University, Sweden

Graphs are useful to model complex systems (e.g., online social networks). Publishing a graph can
lead to the disclosure of personal (or sensitive) information. Nodes may be identified under assumptions
of different intensity: from knowing their degree distribution to being able to perform subgraph matching.

The noise-graph addition technique [2] is a way of protecting from such linkage. Let G0 be a graph
to protect, which can be represented by the adjacency matrix. Then, a random graph G from a given
family is added to G0, and this provides a new graph:

G′ = G0 ⊕G.

Here, addition ⊕ results into those edges in the symmetric difference of the edges of G and of G0.

We can prove that this operation provides a metric. Additional properties on G′ can be proven taking
into account those from G0 and of the random graph G.

Singular value decomposition (SVD) and nonnegative matrix factorization (NMF) have been used for
community detection [3, 4]. The stochastic block model is a model of networks with community structure.
They are tools useful for analyzing G0, for generating random graphs G, and, thus, for creating G′. We
study the effect of the noise-graphs in the SVD of the protected graphs and in relation to the stochastic
block models.

This is joint work with Julian Salas (Open University of Catalonia). This study was partially funded
by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.
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Tensor product approach to epidemiological models on networks

Dmitry Savostyanov

University of Essex, UK

Epidemiological modelling is crucial to inform healthcare policies and to support decision making for
disease prevention and control. The recent outbrake of COVID-19 pandemic raised a significant scientific
and public debate regarding the quality of the mathematical models used to predict the effect of the
pandemics and to choose an appropriate response strategy. One of the first epidemiological models,
proposed by Kormack and McKendrick in 1927, assumes that each member of the population, be it a
susceptible, infected, or recovered person, has the same chance of getting in contact with other members.
The assumption that the population is well–mixed simplifies the mathematical description of the model,
but limits the accuracy of the results, because it ignores the information on where the infected people
are located in relation to the susceptible part of the population.

In contrast, network–based models include information on how often people contact each other, hence
providing a more realistic description of the population. Unfortunately, their complexity grows exponen-
tially with the size of the network — these models suffer from the curse of dimensionality and usually
rely on further approximations to make them practically solvable. In this talk we discuss how epidemi-
ological models on networks can be solved accurately using the recently proposed algorithms based on
low–rank tensor product factorisations. We demonstrate a few examples where the use of tensor product
algorithms deliver more accurate results much faster than the Gillespie’s stochastic simulation algorithm,
widely used for this problem.

This is joint work with Sergey Dolgov (University of Bath, UK). This work is supported by the Lev-
erhulme Trust Research Fellowship RF-2021-258.
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Importance of the deflation process for the solution of quartic eigenvalue
problem

Ivana Šain Glibić

University of Zagreb, Faculty of Science, Department of Mathematics

In this talk, we consider quartic eigenvalue problems, i.e. polynomial problems of degree 4. Our
approach to numerical solution of this problem is to define corresponding linearization, and then compute
eigenvalues of the obtained generalized eigenvalue problem. However, before going to QZ algorithm, we
propose additional steps in order to improve the overall solution of the QZ algorithm.

The strong point of algorithm is the deflation of zero and infinite eigenvalues. The existence of these
eigenvalues is determined by computing numerical rank of leading and constant coefficient matrices.
Proposed procedure is based as much as possible on the initial data.

We will analyse the details of the deflation process for the quartic eigenvalue problem. By presenting
carefully chosen numerical experiments, we will point out the importance and the overall influence of
deflation on the final result.

This is joint work with Zlatko Drmač (University of Zagreb). Supported in part by the Croatian
Science Foundation, UIP-2019-04-5200.
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How the Friedrichs angle leads to lower bounds on the minimum singular value

Avleen Kaur

University of Manitoba

Estimating the eigenvalues of a sum of two symmetric matrices, say P +Q, in terms of the eigenvalues
of P and Q, has a long tradition. To our knowledge, no study has yielded a positive lower bound on the
minimum eigenvalue, λmin(P + Q), when P + Q is symmetric positive definite with P and Q singular
positive semi-definite. We derive two new lower bounds on λmin(P + Q) in terms of the minimum
positive eigenvalues of P and Q. The bounds take into account geometric information by utilizing
the Friedrichs angles between certain subspaces. The basic result is when P and Q are two non-zero
singular positive semi-definite matrices such that P + Q is non-singular, then λmin(P + Q) ≥ (1 −
cos θF ) min{λmin(P ), λmin(Q)}, where λmin represents the minimum positive eigenvalue of the matrix,
and θF is the Friedrichs angle between the range spaces of P and Q. We will discuss the interaction
between the range spaces for some pair of small matrices to elucidate the geometric aspect of these
bounds. Such estimates lead to new lower bounds on the minimum singular value of full rank 1 × 2,
2 × 1, and 2 × 2 block matrices in terms of the minimum positive singular value of these blocks. Some
examples provided in this talk further highlight the simplicity of applying the results in comparison to
some existing lower bounds.

This is joint work with S. H. Lui (Manitoba). Supported by the University of Manitoba Graduate
Fellowship (Avleen Kaur) and the Natural Sciences and Engineering Research Council of Canada (S. H.
Lui).
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Dynamic Katz and Related Network Measures

Ryan Wood

Aalto University

The identification of important nodes within a network is a key feature of complex network analysis
[1]. This is achieved using centrality measures, which are functions that assign a non-negative real value
to each node in the network. These values induce a rank ordering of the nodes which is reflective of their
relative importance within the network.

One significant class of centrality measures is the walk-based centrality measures, for which the value
assigned to a given node is based on the number of walks which begin (or end) at that node. One
well-known walk-based centrality is classical Katz centrality [2] and is given by the formula:

xKatz(t) = (I − tA)−1e (13)

where A is the adjacency matrix associated with the network, and e is the vector of all 1’s of such a
length that is coherent with A.

Non-backtracking Katz centrality is a variant of Katz centrality which discounts walks which involve
a sequence of nodes of the form u→ v → u. This offers several benefits.

Firstly, walks which backtrack in the manner described above can be unrealistic within the context of
the network model. An archetypal example of such a context being instant messaging or email networks,
in which it is unlikely that one reports received information back to its messenger.

Secondly, discounting non-backtracking walks is known to offer concrete benefits such as avoiding
localisation in the eigenvectors of the non-backtracking adjacency matrix [3]. For temporal networks
however, the enumeration of non-backtracking walks is further complicated by the possibility to backtrack
not only spatially, but temporally also.

The subject of this talk will be the exposition of a multigraph approach which provides a combinato-
rially correct formula for non-backtracking centrality measures defined by analytic functions for temporal
networks [4].

This is joint work with Arrigo, Francesca (University of Strathclyde), Higham, Desmond J. (Univer-
sity of Edinburgh) and Noferini, Vanni (Aalto University).
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On the enumeration and properties of complex matrix scalings

George Hutchinson

Lakehead University, Canada

The study of matrix scalings began in earnest with Richard Sinkhorn in 1964, and the subsequent
decades produced many variations and generalizations of his original “classical” scaling.

In this talk, we will discuss one particular variation – the complex matrix scaling, introduced by
Rajesh Pereira in 2003: Given an n× n, positive definite (complex) matrix A and a diagonal matrix D,
we say that D scales A if D∗AD has all row and column sums equal to 1. We will discuss recent progress
made towards several open problems concerning the enumeration and properties of these scalings. We
also give an application to the field of quantum information, using the permanent of these scalings to
arrive at a bound on the geometric measure of entanglement of certain symmetric states.

Despite the application to quantum information, this talk is designed to be accessible to anyone
familiar with elementary matrix theory.
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The Complexity of the Matroid-homomorphism problems

Cheolwon Heo

Applied Algebra and Optimization Research Center, Sungkyunkwan University

In this talk, we introduce homomorphisms between binary matroids that generalize graph homomor-
phisms. For a binary matroid N , we prove a complexity dichotomy for the problem HomM(N) of deciding
if a binary matroid M admits a homomorphism to N . The problem is polynomial time solvable if N has
a loop or has no circuits of odd length, and is otherwise NP-complete. We also get dichotomies for the
list, extension, and retraction versions of the problem.

This is joint work with Hyobin Kim and Mark Siggers at Kyungpook National University.
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Kirchberger’s Theorem for Complexes of Oriented Matroids

Sophia Keip

FernUniversität in Hagen

This talk shows how a new abstract structure that only uses very few axioms can simplify the proof
for an old, classical separation theorem, namely Kirchberger’s Theorem.

Kirchberger’s Theorem: Let V and W be finite subsets of Rn. If every set C ⊆ V ∪W of n + 2 or
fewer points can be strictly separated into the sets V ∩ C and W ∩ C, then V can be strictly separated
from W , i.e. one can find a ∈ Rn and α ∈ R such that aT v − α < 0 for all v ∈ V and aTw− α > 0 for all
w ∈W .

The original proof of Kirchberger in 1902 [3] is long and quite hard to read. Nowadays easier proofs
are known. One possibility is to prove it using Helly’s Theorem like in [2] or [4]. There is also a simpler
proof that is basically a combination of Carathéodory’s Theorem and Farkas’ Lemma, which can be found
in [5]. Since these two theorems are at the heart of oriented matroids (OMs), which give a combinatorial
model of linear algebra over ordered fields, it is natural to generalize Kirchberger’s Theorem to them as
well. We will prove it for complexes of oriented matroids (COMs). COMs have been recently introduced
in [1] as a common generalization of oriented matroids, affine oriented matroids, and lopsided sets. They
can be simply described by a groundset E and a set of sign vectors L. Even though the generalization
from OMs to COMs omits some of the few axioms, it is still possible to prove the following version of
Kirchberger’s Theorem.

Kirchberger’s Theorem for COMs: LetM = (E,L) be a COM of rank r and |E| = n. If for all C ⊆ E
with |C| = r + 1 the sign vector {+}|C| is a sign vector of M\(E\C), then {+}|C| is a sign vector of M.

This is the combinatorial version of Kirchberger’s Theorem as we will explain in our lecture. Since
the axioms that describe a COM are so simple, the proof is elementary and should be understandable for
people who are unfamiliar with oriented matroids. It is an example of how new mathematical structures
can be connected to findings from 120 years ago.

This is a joint work with Winfried Hochstättler (FernUniversität in Hagen) and Kolja Knauer (Uni-
versitat de Barcelona).
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Accurate Bidiagonal Decompositions of Structured Totally Nonnegative
Matrices with Repeated Nodes

Plamen Koev

San Jose State University

The decomposition of a totally nonnegative matrix (one all of whose minors are nonnegative) as a
product of nonnegative bidiagonals is a powerful tool for studying the properties of these matrices [1] as
well as performing numerical computations to high relative accuracy [2].

The conventional bidiagonal decompositions resulting from the complete Neville elimination, when
applied to totally nonnegative matrices of the Vandermonde or Cauchy type have singularities that are
when some of the nodes defining those matrices coincide.

For example, the bidiagonal decomposition of a 3× 3 Vandermonde matrix is:1 x x2

1 y y2

1 z z2

=

1
1
1 1

1
1 1

z−y
y−x 1

1
y − x

(z − x)(z − y)

1 x
1 y

1

1
1 x

1

 ,
which is not defined when x = y.

By relaxing the requirement for the bidiagonal factors to have unit diagonals (which has no detrimental
effects on our ability to study or compute with these matrices), the singularity at x = y can be removed:1 x x2

1 y y2

1 z z2

 =

1
1
1 z − y

1
1 y − x

1 z − x

1
1

1

1 x
1 y

1

1
1 x

1

 .
In this talk we will present the technique to systematically remove the singularities in the bidiagonal

decompositions of many classes of structured totally nonnegative matrices with repeated nodes, such as
(rational, h-, q-Bernstein-) Vandermonde, Lupas, Cauchy, Cauchy Vandermonde matrices, among others.

Practical examples of computing with these matrices will also be presented.

This is joint work with Jorge Delgado, Ana Marco, José-Javier Mart́ınezd, Juan Manuel Peña, Per-
Olof Persson, and Steven Spasov. Supported by the SJSU Woodward Fund.
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Perturbation theory of transfer function matrices

Lauri Nyman

Aalto University

In [5], Tisseur defines a condition number for the eigenvalue of a polynomial matrix. To extend on
this work, we define a structured condition number for a polynomial system matrix P (λ) of rational
matrices R(λ). Since the zeros of rational matrices R(λ) are the zeros of associated polynomial system
matrices P (λ) under minimality conditions [1, 4], this yields a way to characterize the sensitivity of a
zero of R(λ) to structured perturbations.

Any rational matrix R(λ) can be written (or appears directly written) as a transfer function matrix.
That is, of the form

R(λ) = D(λ) + C(λ)A(λ)−1B(λ), (14)

where A(λ), B(λ), C(λ) and D(λ) are arbitrary polynomial matrices, with A(λ) regular. Under mini-
mality conditions [1, 4], the zeros of R(λ) are the eigenvalues of the associated polynomial matrix

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
. (15)

The idea is to study the conditioning of zeros of rational matrices, allowing perturbations in the coefficients
of the matrix polynomials in (14) such that their respective degrees are preserved. This yields a structured
condition number for P (λ) whose main difference with Tisseur’s condition number is that the degrees
of the block matrices are preserved separately. At least in some special cases [2], there are algorithms
that guarantee that the backward error is structured precisely in this sense, and hence this structured
condition number is relevant in practice.

When this structured condition number is compared with Tisseur’s unstructured condition number
for eigenvalues of matrix polynomials, it can be shown that the latter can be unboundedly larger. To
capture all the zeros of R(λ), regardless of whether they are poles or not, the notion of root vectors [3]
can be considered.

This is ongoing joint work with Vanni Noferini (Aalto University), Javier Pérez (University of Mon-
tana) and Maŕıa C. Quintana (Aalto University).
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Bi-additive Models: different types of distributions

Patricia Antunes

Center of Mathematics and Applications, University of Beira Interior, Portugal;

Motivated by classical cumulants and some properties, we explore models that are the sum of a fixed
mean vector Xβ with w independent random terms XiZi, i = 1, ..., w. The random vectors Zi, i = 1, ..., w
will have c1, ..., cw independent and identical distributed components, with variance σ21, ..., σ2w. Thus the
variance matrices of these models will be

∑w
i=1 σ

2
iMi, with Mi = XiX

>
i , i = 1, ..., w and we will consider

their first four cumulants. Its is often preferable to work with cumulants rather than moments, since the
two are entirely equivalent and for independent random variables, the cumulants of a sum are the sums
of the cumulants.

The types of the distributions of the component of vectors Zi, i = 1, ..., w may be different, which
makes the applications of these models not only centered on the normal type expanding its applications.

This is joint work with Sandra S. Ferreira (UBI), Dario Ferreira (UBI), and João T. Mexia (UNL).
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The Fiber of P-matrices: the Recursive Construction of All Matrices with
Positive Principal Minors

Michael Tsatsomeros

Washington State University

P-matrices have positive principal minors and include many well-known matrix classes (positive defi-
nite, totally positive, M-matrices etc.) How does one construct a generic P-matrix? Specifically, is there
a characterization of P-matrices that lends itself to the tractable construction of every P-matrix? To
answer these questions positively, a recursive method is employed that is based on a characterization of
rank-one perturbations that preserve the class of P-matrices.

This is joint work with Faith Zhang
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Accurate computation of the inverse of Totally Positive collocation matrices
of the Lupaş-type (p,q)-analogue of the Bernstein basis

Raquel Viaña

Universidad de Alcalá

The collocation matrices of the Lupaş-type (p,q)-analogue of the Bernstein basis ((p,q)-Lupaş matrices
in the sequel) are a generalization of the Vandermonde matrices obtained when replacing the monomial
basis by a generalization of the Bernstein basis introduced in [1] and used in the area of CAGD: the
Lupaş-type (p,q)-analogue of the Bernstein basis.

In this work we present a fast and accurate algorithm to compute the inverse of a strictly totally
positive (p,q)-Lupaş matrix. Its first stage, which is the main contribution of this work, is the computation
with high relative accuracy of the bidiagonal decomposition of the (p,q)-Lupaş matrix. Then, starting
from this bidiagonal decomposition the inverse of the (p,q)-Lupaş matrix is also computed with high
relative accuracy by using an algorithm developed by Marco and Mart́ınez in [2].

The numerical experiments show the good properties of our approach, which gives very accurate
results even when the condition number of the (p,q)-Lupaş matrices is very high.

This is joint work with Ana Marco (Universidad de Alcalá) and José-javier Mart́ınez (Universidad de
Alcalá). This research has been partially supported by Spanish Research Grant PGC2018-096321-B-I00
from the Spanish Ministerio de Ciencia, Innovación y Universidades. The authors are members of the
Research Group asynacs (Ref.CT-CE2019/683) of Universidad de Alcalá.

Bibliography
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Weak majorization inequalities in Euclidean Jordan algebras

Juyoung Jeong

Applied Algebra and Optimization Research Center
Sungkyunkwan University

2066 Seobu-ro, Suwon 16419, Republic of Korea

In the setting of Euclidean Jordan algebra V, we prove weak majorization inequalities

λ
(
|Pa(b)|

)
≺
w
λ
(
a2
)
∗ λ
(
|b|
)

and λ
(
|a ◦ b|

)
≺
w
λ
(
|a|
)
∗ λ
(
|b|
)
,

for all a, b ∈ V, where Pu and λ(u) denote, respectively, the quadratic representation and the eigenvalue
vector of u, and ◦ denotes the Jordan product in V.

Extending these inequalities, given a linear map T : V → V, we consider the set of all nonnegative
vectors q in Rn with decreasing components that satisfy the pointwise weak majorization inequality

λ
(
|T (x)|

)
≺
w
q ∗ λ

(
|x|
)
.

With respect to the weak majorization ordering, we show the existence of the least vector in this set.
Moreover, when T is a positive map, the least vector is shown to be the join (in the weak majorization
order) of eigenvalue vectors of T (e) and T ∗(e), where e is the unit element of the algebra.

In the form of applications, we prove the generalized Hölder type inequality

||a ◦ b||p ≤ ||a||r ||b||s,

where p, q, r ∈ [1, ∞] with 1
p = 1

r + 1
s , and provide an estimate on the norm of a general linear map

relative to spectral norms.

This talk is a brief summary of two papers in which the first is a joint work with Jiyuan Tao and
M. Seetharama Gowda, and the second is a joint work with M. Seetharama Gowda. The presenting
author is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) No. 2021R1C1C2008350.
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Tropical Matrix Identities

Adi Niv

Kibbutzim College

Tropical matrix theory is well known for its combinatorial nature. Applying the equivalency between
graph theory and matrix theory, over the Max-Plus semiring, Butkovic showed [1] that the tropical setting
gives interpretations to known combinatorial problems. We prove identities on compound matrices in
extended tropical semirings. Such identities include analogues to properties of conjugate matrices, powers
of matrices and Sylvester-Franke identity, all of which are of strong combinatorial flavor.

We then provide a new graph theoretic proof of the tropical Jacobi identity, connecting the compound
of the inverse to the inverse of the compound. Following Butkovic’s interpretations to tropical matrix
identities, we develop an application of this theorem to optimal assignments with supervisions. That is,
optimally assigning multiple tasks to one team, or daily tasks to multiple teams, where each team has a
supervisor task or a supervised task.

This is joint work with S. Gaubert, M. Akian, S. Sergeev and M. MacCaig
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Geometric continuity, Riordan matrices and applications

Luis Felipe Prieto-Mart́ınez

Universidad Politécnica de Madrid

Geometric continuity Gk is an elementary concept in the geometry of parametrized curves. It is a
notion of smoothness that does not depend on a concrete parametrization, but on the curve itself.

A particular and important question related to this definition is the study of the smoothness of curves
described by a piecewise Ck parametrization, that is, the smoothness on the union of smooth pieces.
There are well known compatibility conditions (called the beta-constraints) for the parametrizations of
each piece to guarantee such geometric continuity.

In this talk, we will explain how this compatibility conditions can be stated in terms of partial
Riordan matrices (for k <∞) and Riordan matrices (for k =∞). Moreover, we will show how this new
statement can help us to prove some uniqueness results concerning analytic curves. We will illustrate
this method with two particular results related to well known problems in plane Geometry, namely, (1)
if there exists an analytic curve with two interior equichordal points then it must be unique (related to
the equichordal problem) and (2) the unique analytic curve with an exterior power point is the circle
(related to Rosenbaum’s Power Point Problem).

The author was partially supported by Spanish Goverment grant PGC2018-098321-B-I00.
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Strong solvability of restricted interval systems and its applications in
quadratic and geometric programming

Milan Hlad́ık

Charles University, Faculty of Mathematics and Physics, Prague

Interval systems of linear equations and inequalities are well studied and several concepts of solutions
and solvability exist [1, 2, 3]. Our focus is mainly on strong solvability, which means solvability for each
realization of interval values. In case of the interval inequalities, there is an interesting relation to the
existence of a strong solution, defined analogously. Our aim is to extend the results to the situation,
where we have an a priori restriction of the solutions to a given set D.

The motivation comes from the area of interval-valued optimization problems, where strong solvability
means guaranteed feasibility of any realization of the problem. Strong solvability with strict inequalities
then implies the robust Slater condition, which ensures that standard optimality conditions can be used.

We apply the issues particularly in two optimization classes, convex quadratic programming with
quadratic constraints and posynomial geometric programming. Since the constraints are nonlinear here,
we adapt the previous results by a suitable transformation and by utilizing the restricted domain D. For
convex quadratic programming, we also utilize the presented result to improve a characterization of the
worst case optimal value.

Eventually, we state several open problems that emerged while deriving the results; it is especially
hard to involve interval linear equations in the characterization of strong solvability.

Supported by the Czech Science Foundation under Grant P403-22-11117S.
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?-Lanczos procedure for non-autonomous ODEs

Niel Van Buggenhout

Charles University

The time ordered exponential U(t) is the solution to the ODE

d

dt
U(t) = A(t)U(t), U(s) = I, t ≥ s,

where A(t) is a time dependent matrix and s is the starting time. This ODE arises, e.g., from quantum
dynamical systems, where A(t, s) is related to the Hamiltonian of the system.
Computing the time ordered exponential remains a difficult problem and no satisfactory method is avail-
able for large-to-huge systems. Recently a new symbolic procedure based on walks on a graph was
developed which expresses the solution as a continued fraction of finite depth and breadth [1]. This
method is, however, prohibitively expensive for large problems.
The underlying graph can be approximated by using a symbolic Lanczos-like procedure, called ?-Lanczos
[2], which results in a simpler graph with a tridiagonal adjacency matrix. At a lower computational
cost an approximation to U(t) can now be obtained via a Jacobi continued fraction. Underlying the
?-Lanczos procedure is a noncommutative algebra with a convolution-like product between functions, the
?-product. Variants of properties of the classical Lanczos iteration for matrices and vectors are valid for
this Lanczos-like procedure for matrices of functions. For example, the moment matching property and
the three term recurrence relation.
The ?-Lanczos procedure is a symbolic method and we aim to develop a numerical counterpart. There-
fore, in this presentation, we discuss possible discretizations of this procedure. We deal with bivariate
functions of the form f(t)Θ(t − s), with Θ(·) the Heaviside step function. A suitable discretization ex-
pands such functions into a (double) series of orthogonal polynomials and transforms the ?-product into
ordinary matrix-matrix multiplication. This allows us to use efficient numerical procedures to obtain
an approximation to U(t). One possible expansion basis for the series are the Legendre polynomials.
However, due to the presence of a jump caused by the Heaviside function, we must deal with the Gibbs
phenomenon.

This is joint work with Stefano Pozza (Charles University). Supported by Charles University Research
program No. PRIMUS/21/SCI/009.
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Monge-like properties in the interval setting

Černý Martin

Charles University

The Monge property of a real matrix A ∈ Rn×n can be expressed as

aij + ak` ≤ ai` + akj

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. This simple to express property is fundamental for many efficient algorithms
applied in various problems from geometry, combinatorics, optimisation or statistics [1, 2]. Many modi-
fications of the property lead to interesting classes of Monge-like matrices, to name a few, Robinsonian,
ultrametric, totally monotonic, or Monge-permutable matrices.

In our research, we do a systematic analysis of Monge-like properties in the interval setting. Matrix
intervals allow for computations with inexact data. Rather than storing precise values (which might be
impossible thanks to limitations of the measurement), we employ real intervals with a guarantee that
each underlying value is in the range of its interval. Computations with matrix intervals are then carried
out in a way that the exact solution of the original problem is guaranteed to be in the range of the output
interval. Further, if the width of the interval is negligible, so is the error.

We focus on two variants of the Monge-like properties in the interval setting, so called weak and strong
properties. For the definition of both of these properties, matrix realisations of the matrix interval (real
matrices with entries from the intervals) are considered. If there is at least one realisation satisfying the
Monge-like property, we say the matrix interval satisfies its weak form. If all of the realisations satisfy
the Monge-like property, the matrix interval satisfies its strong form.

We deal with different characterisations of weak and strong Monge-like properties as well as with
necessary and sufficient conditions. If the matrix interval satisfies the strong property, an interesting
question to consider is if it can be recognised by checking the Monge-like property for a finite (hopefully,
polynomial) number of its matrix realisations. This property of matrix intervals, referred to as the interval
property [5], is also studied in our research. Finally, we investigate possible interval generalisations of
known algorithm for Monge-like properties together with their complexity analysis.

This is joint work with prof. Jürgen Garloff (Konstanz). Supported by SVV 260578/2020.
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Average Mixing Matrices on Dutch Windmill Graphs

Paula Kimmerling

Washington State University

Let A be the adjacency matrix of a graph. We may associate this graph with a continuous-time
quantum walk by using a transition matrix U(t) = exp itA. This allows us to create another matrix
M̂ which is independent of time and gives some measure of average probability values and long-term
behavior. M̂ is called the average mixing matrix, which we first saw in [1], but more work had been done
prior by the same group in [2] and [3].

In our research, we’ve focused on cactus graphs, many of which are different from previous work done
because they have repeated eigenvalues. We’ve shown what happens to the rank of M̂ if we restrict our
graphs to Dutch Windmill graphs, just one type of cactus graph. In this talk we will show that it has
no better than half-rank and why, including the relationships between Dutch Windmills and path/star
graphs.

This is joint work with Dr. Judi McDonald at Washington State University.
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Interval B-matrices, doubly B-matrices and BR
π -matrices

Matyáš Lorenc

Charles University, Faculty of Mathematics and Physics, Prague

In 1968, mathematicians Cottle and Dantzig proposed the linear complementarity problem, denoted
LCP (M, q), where M is a matrix and q a vector. Later, Cottle et al. showed that for every vector q
the LCP (M, q) has a unique solution if and only if M is a P-matrix, i.e. all its principal minors are
positive. However, verifying whether a given matrix is a P-matrix is co-NP-complete. Therefore several
subclasses of P-matrices that are more easily recognizable are defined. Such classes might be B -matrices
(introduced in [1]), doubly B -matrices (introduced in [2]) or BR

π -matrices (introduced in [3]).

In our work, we generalize the three subclasses of P -matrices mentioned above into the interval
setting. We define interval analogies of those classes and we deduce characterizations, both direct through
some characteristic property or via reduction to finite number of real instances. That might help us again
e.g. with the LCP (M, q), this time with its interval variant, where we use intervals to somehow capture
inaccuracy in data. That is because all the interval classes we derive are subclasses of interval P-matrices.
What is interesting is that whereas the complexity of characterizations of interval B -matrices and interval
BR
π -matrices is the same as that of the real cases, which is O(n2), for interval doubly B -matrices it is

O(n4) compared to O(n2) for the real case.

Supported by the Czech Science Foundation under Grant P403-22-11117S.
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Hub and authority centrality measures based on continuous-time quantum
walks

Paola Boito

Università di Pisa

Measures of node centrality are a fundamental topic in network analysis. For directed networks, in
particular, there is a distinction to be made between hub and authority centrality scores, since each node
plays a double role in the network.

In recent years, interest for quantum computation has fueled the development of the theory of quantum
walks on networks, which can be also used to define centrality measures on graphs. Building on ideas
from [3] and [1], in this work we propose to employ continuous-time quantum walks (CTQW) to define
measures of hub and authority centrality for directed graphs.

Recall that the time evolution of a CTQW on a graph is described by the Schrödinger equation

i
∂|ψ(t)〉
∂t

= H|ψ(t)〉, (16)

where |ψ(t)〉 is the state of the system at time t, and the Hamiltonian operator H encodes the structure of
the graph. The associated evolution operator takes the form U(t) = exp(−itH). Note that for quantum
walks the quantum state of the system does not converge to a stationary state (as opposed to the classical
case). For this reason, time averages are usually applied to define centrality scores.

We explore different choices for H and for the initial state |ψ(0)〉 and compare experimentally the
resulting quantum centrality score with well-established centrality measures such as HITS, PageRank,
the method from [1] and, when possible, discrete-time Quantum PageRank [4].

This is joint work with Roberto Grena (ENEA).
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Rational matrix solutions to p(X) = A

André Ran

Vrije Universiteit, The Netherlands and North-West University, South Africa

Consider an n×nmatrixA with rational entries, and let p(λ) be a polynomial with rational coefficients.
The question we consider is whether or not there is a rational n× n matrix X such that p(X) = A, and
if there is, how to find it. In addition, we consider the problem over which field extension of the rationals
there will be a solution, provided a solution over the complex numbers does exist.

The solution to this problem was first discussed in [1] for the case where A has n distinct eigenvalues.
Our contribution is to extend this result to more general cases. This requires a new canonical form for
the matrix A.

In the talk we will outline the steps involved in the solution of the problem, and if there is time,
discuss some examples. In particular, we are interested in mth roots of A.

This is joint work with Gilbert Groenewald, Dawie Janse van Rensburg, Madelein van Straaten and
Frieda Theron (all North-West University)

Bibliography

[1] M.P. Drazin. Exact rational solutions of the matrix equation A = p(X) by linearization. Linear Algebra Appl.,
426 (2007) 502–515.



Thu 23 June, 10:30, AC204 282 Contrib. 6A

Projections, Lp Norms and Stochastic Matrices for Ill-Conditioned Linear
Systems of Equations

Riadh ZORGATI

EDF Lab Paris Saclay

In quite diverse application areas, we aim at finding a vector x, solution of a system of linear equations
Ax = b, where b is a given vector and A is a given very ill-conditioned m×n matrix, making the resolution
difficult. This issue appears, for example, in physics when discretizing a Fredholm integral equation of the
first kind and in mathematical optimization when solving linear programs with interior point algorithms.
One solving approach is to consider the system RAx = Rb, Rb ∈ Im(RA), Ker(RA) = Ker(A), where
the preconditioning n ×m matrix R is a gain matrix i.e. ρ(I − RA |Im(I−RA)) < 1, with ρ the spectral
radius of a matrix and I the identity matrix. Then, for any gain matrix R, the Richardson’s iterative
scheme xk+1 = xk+R(b−Ax), k = 1, 2, ... can be implemented to calculate a solution of the system. For
any nonzero row matrix A, we can choose for R one of the two projective gain matrices: i) the Kaczmarz
matrix K = [K1...Kn], with Ki = 1

‖ai‖22

∏i−1
j=1(I −

1
‖aj‖22

a∗jaj)a
∗
i , where ∗ is the transposed conjugate and

the product is considered to be I whenever i < 2 and ai is the ith row-vector of A; ii) the Cimmino
matrix C = 2

mA
∗D, where D is a diagonal matrix with Dii = 1/ ‖ai‖22. In addition, we propose the

following approach for dealing with such an issue.
Firstly, using the L1 norm, we construct an approximation R of a generalized inverse of a nonnegative
matrix A such that the preconditioned matrix RA is stochastic (RAe = e, e the all-one vector). This
property allows us to retrieve, in an original way, the Schultz-Hotelling-Bodewig’s (SHB) algorithm
(of order q = 2) of iterative refinement of the approximate inverse of a matrix: R0 = R , Rk+1 =
Rk
(
2I −ARk

)
, k = 1, 2, .... This basic approach is then extended to hermitian, semi-definite positive

matrices and finally generalized to any complex rectangular matrices. The proposed preconditionning gain
matrix R, has the general form R = αNν

pA
∗Mµ

p , where Np, Mp are diagonal matrices involving a Lp norm
related to A∗ and A respectively and α, ν, µ are scalars (the Cimmino’s matrix corresponds to the choice of
the Euclidian norm in an asymmetrical structure : ν = 0; µ = 2 with α = 2

m). The proposed gain matrix
with the norm L1 and α = 1, ν = µ = 1, always satisfies the convergence condition ρ(I − RA |Im(I−RA)
) < 1. Secondly, we propose a generalized iterative SHB scheme of any order q ≥ 2, allowing to calculate,
from any gain matrix R, successive approximations of the (generalized) inverse, denoted A−, of A ∈
Cm×n6=0 , or A ∈ Cm×m+ , of rank m, based on the following theorem: lim

q→∞
R
∑q

j=1
q!

j!(q−j)!(−AR)j−1 = A−.

By achieving q cycles of projections in Kaczmarz’s and Cimmino’s methods, this scheme accelerates
convergence of row-action and Richardson schemes. The higher the order, the faster the convergence.
But the gain in speed of convergence must be weighed against the very high cost for computing SHB
matrices of order q and a compromise must be achieved. Regarding numerical results obtained on
some pathological well-known test-cases (Hilbert, Nakasaka, . . . ), some of the proposed algorithms are
empirically shown to be very efficient on ill-conditioned problems and robust to error propagation.
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Bidiagonal decomposition and accurate computations with matrices of
q-integers

Héctor Orera

University of Zaragoza

A matrix is totally positive if all its minors are nonnegative. A nonsingular totally positive matrix
can be factorized as a product of nonnegative bidiagonal matrices. This factorization provides a natural
parameterization of this class of matrices that can be used to perform many algebraic computations with
high relative accuracy [3, 4], assuming that it can be computed with high relative accuracy. For example,
it can be used to compute all the eigenvalues, all the singular values and the inverse to high relative
accuracy. Quantum calculus is based on q-integers and has many applications (see [2]). In this talk, we
will introduce some subclasses of totally positive matrices based on the q-integers like those of [1], for
which the bidiagonal decomposition, and hence, the solution to the mentioned linear algebra problems,
can be computed with high relative accuracy.

This is joint work with Juan Manuel Peña and Jorge Delgado (University of Zaragoza). Supported
by the Spanish research Grant PGC2018-096321-B-I00 (MCIU /AEI)
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Solving (Overdetermined) Polynomial Equations

Philippe Dreesen

KU Leuven, Dept. ESAT/STADIUS

Systems of polynomial equations arise in a wide range of (applied) mathematics and engineering
applications, such as systems theory and control, numerical optimization, etc. Methods for solving
systems of polynomial equations have been largely dominated by symbolic and hybrid symbolic-numeric
approaches. Recent years have witnessed the (re)emergence of numerical solution methods [1, 2, 3] that
are related to Sylvester and Macaulay matrices or resultants. In this framework, the system of polynomial
equations can be viewed as a homogeneous linear matrix equation consisting of a large coefficient matrix
that is multiplied with a vector of monomials. The solutions of the system of polynomial equations can
be computed from a certain eigenvalue problem that is obtained from a numerical basis of the null space
of the coefficient matrix.

The fact that this formulation expresses the problem of solving a system of polynomial equations in
the language of (numerical) linear algebra suggests the exploration of finding approximate solutions of
overdetermined systems of polynomial equations. The linear algebra approach that is described above
is able to naturally deal with overdetermined systems of polynomial equations, provided that certain
numerical rank decisions and projections are carefully considered throughout the solution procedure.
The proposed method provides a fresh perspective on extending current methods for solving polynomial
systems to the overdetermined case, which is a problem that received little research attention until now,
likely because symbolic and hybrid-symbolic are not able to deal elegantly with overdetermined systems.

In this talk, we will develop the linear algebra-based solution method involving the Macaulay matrix
formulation. Then we will illustrate how the method naturally extends to the case of overdetermined
systems of polynomial equations.

This is joint work with Bart De Moor (KU Leuven, ESAT/STADIUS). Supported by KU Leuven
Research Fund; FWO (EOS Project 30468160 (SeLMA), SBO project S005319N, Infrastructure project
I013218N, TBM Project T001919N, G028015N, G090117N, SB/1SA1319N, SB/1S93918, SB/151622);
Flemish Government (AI Research Program); European Research Council under the European Union’s
Horizon 2020 research and innovation programme (ERC AdG grant 885682). PD and BDM are affiliated
to Leuven.AI - KU Leuven institute for AI, Leuven, Belgium.
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Hurwitz primitivity and synchronizing automata

Yinfeng Zhu

Imperial College London and Shanghai Jiao Tong University

For each positive integer m, we use [m] for the set of first m positive integers. Let A = (A1, . . . , Am)
be an m-tuple of nonnegative n× n matrices. For each word α over [m], say α = α1 · · ·αs, we write Aα
for the product Aα1 · · ·Aαs . We call A primitive if Aα > 0 for a nonempty word α over [m]. We call A
Hurwitz primitive provided there exists a nonnegative integer vector τ = (τ(1), . . . , τ(m)) such that for
each x, y ∈ [n] there exists a nonempty word αx,y over [m] such that Aαx,y(x, y) > 0 and the number of
occurrence of i in αx,y is τ(i) for each i ∈ [m]. The m-tuple τ satisfying the above property is named a
Hurwitz primitive vector of A.

Let NZ1 denote the set of nonnegative matrices without zero rows and let NZ2 denote the set of non-
negative matrices without zero rows/columns. We give a unified combinatorial proof for the Protasov-
Vonyov characterization [5] of primitive NZ2-matrix tuples and the Protasov characterization [3] of Hur-
witz primitive NZ1-matrix tuples. By establishing a connection with synchronizing automata, for any
Hurwitz primitive m-tuple A of n×n NZ1-matrices we give an O(n3m2)-time algorithm to find a Hurwitz
primitive vector τ of A such that

∑
i∈[m] τ(i) = O(n3). For any given m-tuple of n× n NZ2-matrices, we

present an O(n2m)-time algorithm to test whether or not it is primitive.

This is joint work with Yaokun Wu (Shanghai Jiao Tong University).
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Efficient Computation of Parametric Reduced Order Models using
Randomization

Eric de Sturler

Virginia Tech

Partial differential equations-based nonlinear parametric inverse problems appear in many applica-
tions. The main computational bottleneck in these problems is the repeated evaluation of the large-scale
forward model, which often requires solving large linear systems for many source terms as well as multi-
ple frequencies and wavelengths at each optimization step. In addition, for Newton-type methods, which
may be required for fast convergence, the solution of additional linear systems with the adjoint operator
may be required to efficiently compute derivative information. As rapid advances in technology allow for
large numbers of sources and detectors, these problems become computationally prohibitively expensive.

We have successfully used reduced order models (ROM) to drastically reduce the size of the linear
systems while still obtaining accurate solutions. However, even the construction of the ROM bases incurs
a substantial cost, as it requires the solution of large linear systems for all sources, frequencies, and
detectors for interpolation points in parameter space to build a candidate basis for the ROM projection
space. We propose to use randomization to approximate this low-rank candidate basis efficiently and
drastically reduce the number of large linear solves for constructing the global ROM basis. We also analyze
the low-rank structure of the candidate basis for our problem of interest, diffuse optical tomography. The
ideas presented are relevant to many other large scale inverse problems and optimization problems.

This is joint work with Selin Aslan (Argonne National Lab and Virginia Tech) and Serkan Gugercin
(Virginia Tech). This work was supported by the National Science Foundation under Grants DMS-
1720305 and DMS-1438768 and by the Simons Foundation Grant 507536.
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The change of the Weierstrass structure under one row perturbation

Alicia Roca

Universitat Politécnica de Valéncia

We study the change of the structure of a regular pencil when we perform small perturbations of some
of its rows, while the rest of the rows remain unaltered. We provide necessary conditions when several
rows are perturbed, and prove them to be sufficient to prescribe the homogenous invariant factors or the
Weyr characteristic of the resulting pencil when one row is perturbed.

We generalize to regular pencils previous studies in the field. Changes in the similarity invariants of
a matrix when small additive perturbations are performed over one or several rows have been analyzed
in [1, 2], and changes in the feedback invariants of a pair of matrices have also been explored in [3]).

This is joint work with Itziar Baragaña (Universidad del Páıs Vasco / Euskal Herriko Unibertsitatea,
UPV/EHU).
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[3] M. Dodig and M. Stošić. The change of feedback invariants under one row perturbation. Linear Algebra and
its Applications, 422: 582-603, 2007.



Thu 23 June, 12:00, Anderson 288 Contrib. 6B

Construction of a sequence of orthogonal rational functions

Raf Vandebril

KU Leuven, Belgium

Orthogonal polynomials are an important tool to approximate functions. Orthogonal rational func-
tions provide a powerful alternative if the function of interest is not well approximated by polynomials.
Polynomials orthogonal with respect to certain discrete inner products can be constructed by applying
the Lanczos or Arnoldi iteration to appropriately chosen diagonal matrix and vector. This can be viewed
as a matrix version of the Stieltjes procedure. The generated nested orthonormal basis can be inter-
preted as a sequence of orthogonal polynomials. The corresponding Hessenberg matrix, containing the
recurrence coefficients, also represents the sequence of orthogonal polynomials.

Alternatively, this Hessenberg matrix can be generated by an updating procedure. The goal of this
procedure is to enforce Hessenberg structure onto a matrix which shares its eigenvalues with the given
diagonal matrix and the first entries of its eigenvectors must correspond to the elements of the given
vector. Plane rotations are used to introduce the elements of the given vector one by one and to enforce
Hessenberg structure.

The updating procedure is stable thanks to the use of unitary similarity transformations. In this talk
rational generalizations of the Lanczos and Arnoldi iterations are discussed. These iterations generate
nested orthonormal bases which can be interpreted as a sequence of orthogonal rational functions with
prescribed poles. A matrix pencil of Hessenberg structure underlies these iterations. We show that this
Hessenberg pencil can also be used to represent the orthogonal rational function sequence and we propose
an updating procedure for this case. The proposed procedure applies unitary similarity transformations
and its numerical stability is illustrated.

This is joint work with Niel Van Buggenhout and Marc Van Barel.



Thu 23 June, 14:00, AC215 289 Contrib. 7

H-selfadjoint mth roots of H-selfadjoint matrices over the quaternions

Madelein van Straaten

North-West University, South Africa

Consider a square matrix B in the indefinite inner product space generated by an invertible Hermitian
matrix H. The matrix B is called H-selfadjoint if it is selfadjoint in the corresponding indefinite inner
product space, or equivalently, if HB = B∗H.

Let B be an H-selfadjoint complex matrix. We give the necessary and sufficient conditions for the
existence of an H-selfadjoint matrix A such that Am = B, that is, A is an mth root of B.

We will look at the cases where the indefinite inner product is defined on a complex vector space and
where it is defined on a quaternion vector space.

This is joint work with A.C.M. Ran (VU Amsterdam and North-West University), G.J. Groenewald,
D.B. Janse van Rensburg, and F. Theron (all North-West University).



Thu 23 June, 14:30, AC215 290 Contrib. 7

An alternative canonical form for quaternionic H-unitary matrices.

Dawie Janse van Rensburg

North-West University, Potchefstroom, South Africa.

The field of linear algebra over the quaternions is a research area which is still in development. In
this paper we continue our research on canonical forms for a matrix pair (A,H), where the matrix A is
H-unitary, H is invertible and with A as well as H quaternionic matrices. We seek an invertible matrix
S such that the transformations from (A,H) to (S−1AS, S∗HS) brings the matrix A in Jordan form and
simultaneously brings H into a canonical form. Canonical forms for such pairs of matrices already exist
in the literature, the goal of the present paper is to add one more canonical form which specifically keeps
A in Jordan form, in contrast to the existing canonical forms.

This is joint work with G.J. Groenewald (North-West University, SA), A.C.M. Ran (VU, the Nether-
lands). Supported by the DSI-NRF Centre of Excellence in Mathematical and Statistical Sciences, ref nr.
2022-012-ALG-ILAS.
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The combinatory under isomorphic lattices of hyperinvariant subspaces

M. Eulàlia Montoro

University of Barcelona

Let f : Cn −→ Cn be a linear transformation over the complex field and Hinv(f) the lattice of the
hyperinvariant subspaces of f (that is, the set of linear transformations commuting with f). We study
the linear transformations whose lattices of hyperinvariant subspaces are isomorphic to Hinv(f). We
present a revision of the results provided in [1].

This is joint work with David Mingueza (Nestlé) and Alicia Roca (Universidad Politécnica de Valen-
cia). Supported by the Spanish MICINN research project PID2019-104047GB-I00.

Bibliography

[1] Pei Yuan Wu. Which linear transformations have isomorphic hyperinvariant subspace lattices?. Linear Algebra
and its Applications, 169: 163-178, (1992).
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About the type of broom trees

Claudia Justel

Instituto Militar de Engenharia

Fiedler ([1]) provides a classification of trees according to whether there is an eigenvector correspond-
ing to the algebraic connectivity which has a zero entry by using the concept of characteristic vertices.
Grone and Merris ([2]) denoted those two classes of trees as type 1 and type 2. Another approach to
trees and their classification is given by Kirkland, Neumann and Shader in [5].

For trees, to identify families for which its elements are of the same type is not an easy task. We
consider the broom tree Tn,k of order n, obtained by the coalescense of one leaf of the path of order n−k
with the center of the star of order k + 1. In [3] Patra shows conditions for a broom tree by of type 2,
proving that Tn,2 is of type 2 and giving a lower bound for k depending on n in order to guarantee that
Tn,k the 2 type. In [4] is conjectured that broom trees are of type 2.

In this work some theorical and experimental results for the type of some subfamilies of broom trees
are presented. The results are based on the characterization given by [5].

This is joint work with Daniel Felisberto Traciná Filho (Instituto Militar de Engenharia). Supported
by CAPES, Coordenação de Aperfeiçoamento de Pessoal do Nı́vel Superior - Código de Financiamento
001.
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Weighted Projections of Alternating Sign Matrices and Latin-like Squares

Cian O’Brien

Cardiff University

To any n×n Latin square L, we may associate a sequence of n×n permutation matrices P = P1, . . . , Pn
such that

L = L(P ) =
n∑
k=1

kPk.

Brualdi and Dahl [1] introduced a generalisation of a Latin square, called an alternating sign hyper-
matrix Latin-like square (ASHL), obtained by replacing P in the above weighted sum with an alternating
sign hypermatrix (ASHM). An ASHM is an n×n×n hypermatrix with entries from {1,−1, 0} such that
the non-zero entries in each row, column, and vertical line alternate in sign, beginning and ending with
+1.

Alternating sign matrices arise in a number of different contexts as a natural generalisation of permu-
tation matrices, and every sequence of n×n permutation matrices corresponding to a Latin square forms
the planes of a unique n × n × n ASHM. This generalisation therefore follows very naturally from the
above interpretation of a Latin square, with an ASHM A has corresponding ASHL L defined as follows.

L = L(A) =
n∑
k=1

kAk,

where Ak is the kth plane of A.

As a step towards characterising these Latin-like squares without needing to find the underlying
hypermatrix, we can consider the weighted projection [1] of an alternating sign matrix. The weighted
projection sends an ASM A to a vector v(A), which corresponds to a single row or column of a Latin-like
square.

This talk presents proof of a conjecture [1] that for any vector v which is majorized by (n, n −
1, . . . , 3, 2, 1), there exists an alternating sign matrix A for which v(A) = v, and discusses further steps
towards characterising ASHLs [2].

Bibliography
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Thu 23 June, 10:00, 295 Poster Session

The Cartesian product of graphs and entropy metrics for graph signals.

John Stewart Fabila-Carrasco

University of Edinburgh

Entropy metrics are nonlinear measures to quantify the complexity of time series. Among them,
Permutation Entropy (PE) is a well-established nonlinear metric based on the comparison of neighbouring
values within patterns in a time series. PE is robustness to noise and fast computation [1]. Multivariate
entropy metrics techniques are needed to analyse data consisting of more than one time series. To this
end, we present a multivariate permutation entropy, MPEG, using a graph-based approach.

Given a multivariate signal, the algorithm MPEG introduced in [2] involves two main steps:

1) Graph construction: we construct an underlying graph G as the Cartesian product of two
graphs G1 and G2, i.e., G := G1�G2, where G1 preserves temporal information of each times series
together with G2 that models the relations between different channels.

2) Permutation entropy for graph signals: we consider the multivariate signal as samples defined
on the regular graph G and apply the recently introduced permutation entropy for graphs PEG [3].

PEG is an entropy metric to analyse signals measured over irregular graphs by generalising permu-
tation entropy. The algorithm PEG is based on comparing signal values on neighbouring vertices, using
the adjacency matrix, and it has important relations with the sign of the Laplacian matrix [4]. This gen-
eralisation preserves the properties of classical permutation for time series and the recent permutation
entropy for images, and it can be applied to any graph structure with synthetic and real signals.

Our graph-based approach to multivariate permutation entropy gives the flexibility to consider di-
verse types of cross channel relationships and signals, and it overcomes with the limitations of current
multivariate permutation entropy algorithms.

This is joint work with Javier Escudero (University of Edinburgh) and Chao Tan (Tianjin University).
Supported by the Leverhulme Trust via a Research Project Grant (RPG-2020-158), and Post-Doctoral
Enrichment Award from the Alan Turing Institute to JSFC.
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Thu 23 June, 10:00, 296 Poster Session

Powers of Karpelevič Arcs

Priyanka Joshi

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

A celebrated result of Karpelevič describes Θn the collection of all eigenvalues arising from the stochas-
tic matrices of order n. The boundary of Θn is a disjoint union of arcs, known as the Karpelevič arcs.

Johnson and Paparella [2] considered relationships between different arcs, and posed a conjecture
on their powers. This conjecture was later proved by Kim and Kim [3]. We continue their work and
give a complete characterization of the Karpelevič arcs that are powers of some other Karpelevič arc.
Furthermore, we study the powers of the corresponding realising matrices. In particular, we show that in
the case when a Karpelevič arc is a power of another Karpelevič arc, only selected corresponding realising
matrices can be written as a power of another stochastic matrix.

This is joint work with Stephen Kirkland (University of Manitoba) and Helena Šmigoc (University
College Dublin). Supported by Science Foundation Ireland (SFI) under Grant Number SFI 18/CRT/6049.
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Appl., 635 (2022), 116–138.



Thu 23 June, 10:00, 297 Poster Session

Recursion of Eigenvectors in Dutch Windmill Graphs

Paula Kimmerling

Washington State University

Let A be the adjacency matrix of a graph. We may associate this graph with a continuous-time
quantum walk by using a transition matrix U(t) = exp itA. This allows us to create another matrix
M̂ which is independent of time and gives some measure of average probability values and long-term
behavior. M̂ is called the average mixing matrix, which we first saw in [1], but more work had been done
prior by the same group in [2] and [3].

In our research, we’ve focused on cactus graphs, many of which are different from previous work done
because they have repeated eigenvalues. We’ve shown what happens to the rank of M̂ if we restrict our
graphs to Dutch Windmill graphs, just one type of cactus graph. In this poster we will discuss one of
our proof techniques to supplement our main result in our talk, which is that the rank is no better than
half. This involves a recursive relationship between some of the entries of the eigenvectors.

This is joint work with Dr. Judi McDonald at Washington State University.
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Thu 23 June, 10:00, 298 Poster Session

Diffusive Stability, Common Lyapunov Functions and Leslie Matrices

Blake McGrane-Corrigan

Maynooth University

How does connecting two stable linear time-invariant systems affect the stability of the resulting coupled
system? This question can arise in ecological applications, for example when investigating the effects of
dispersal/diffusion in patchy environments. Inspired by recent work on establishing conditions for robust
diffusive stability via common linear copositive Lyapunov functions, we present some results relating
robust diffusive stability to other types of Lyapunov functions. We further show that when any pair
of linear systems described by Leslie matrices are diffusively coupled, they are stable for any choice of
coupling matrix.

This is joint work with Oliver Mason and Rafael de Andrade Moral (Maynooth University) and is
supported by the Irish Research Council through a Government of Ireland Postgraduate Scholarship.



Thu 23 June, 10:00, 299 Poster Session

The Mathematics behind the quantification of entanglement in Quantum
Mechanics

Victoria Sánchez Muñoz

National University of Ireland Galway

The entanglement of a quantum state is one of the unique features of Quantum Mechanics in com-
parison to classical physics. Many of the novel phenomena and applications that are found in Quantum
Cryptography, Quantum Information, and Quantum Computing arise from the concept of entanglement
(see the comprehensive review [1]). That is why the classification and quantification of entanglement is
of high importance in Quantum Mechanics.

The present poster illustrates how entanglement is defined, how it is classified, and the Mathematics
behind its quantification for a two-qubit and three-qubit pure quantum states.

Supported by the College of Science and Engineering at the National University of Ireland Galway.
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Hierarchical Off Diagonal Low Rank Matrices (HODLR) for problems in
higher dimensions

V A Kandappan

Indian Institute of Technology, Madras

Hierarchical matrices such as HODLR, HSS, H2, etc. are used in constructing approximations and
computing matrix operations for rank structured matrices. We introduced a new class of Hierarchical
matrices [1] for matrices arising out of the discretization of PDEs in 2D, in this work we extend this to
problems from higher dimensions and applications in higher dimensional statistics, machine learning, etc.
The matrix partitioning in a d-dimensional setting is done by constructing a 2d-tree over the underlying
computational domain. We present the growth of ranks for various kinds of interactions. We identify
the sub-blocks whose ranks do not scale with their size and low-rank approximate them. As a result, the
computational complexity of construction and matrix-vector product scale almost linearly in the system
size. We present various benchmarks and compare its performance with other Hierarchical matrices.

This is joint work with Vaishnavi Gujjula (Indian Institute of Technology Madras) and Sivaram Am-
bikasaran (Indian Institute of Technology Madras)

Bibliography

[1] Kandappan, V. A., Vaishnavi Gujjula, and Sivaram Ambikasaran. HODLR2D: A new class of Hierarchical
matrices. arXiv preprint arXiv:2204.05536, (2022).



301

Organisation

Local Organising Committee

• Rachel Quinlan (Co-chair)

• Helena S̆migoc (Co-chair)

• Paul Barry

• Jane Breen

• Anthony Cronin

• Ronan Egan

• Richard Ellard
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Ivana Šain Glibić, 261
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Sepideh Stewart and Anthony Cronin, 114

Seth A. Meyer, 136
Shahla Nasserasr, 87
Shaun Fallat, 83
Shin-ichi Tanigawa, 156
Shmuel Friedland, 29
Signe Lundqvist, 153
Siobhán Correnty, 125
Sirani M. Perera, 213
Siripong Sirisuk, 196
Sooyeong Kim, 80
Sophia Keip, 266
Steve Kirkland , 207
Suil O, 33
Susana Furtado, 211

Tamás Titkos, 94
Tian-Xiao He, 183
Tom Asaki, 256
Tomack Gilmore, 149
Travis B. Russell, 65

V A Kandappan, 133, 300
Vanni Noferini, 171
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