
NA for SPDEs 1

AARMS-CRM Workshop on NA of SPDEs, July 2016

MATLAB primer
Niall Madden (Niall.Madden@NUIGalway.ie)

(If you are familiar with MATLAB, you can skip this)

MATLAB is the standard tool for numerical computing

in industry and research. It specialises in matrix compu-

tations (Matrix Laboratory), but includes functions for

graphics, numerical integration and differentiation, solv-

ing differential equations, image and signal analysis, and

much more.

GNU Octave is a free, open source, implementation of

MATLAB. Its GUI, IDE and graphics capabilities are

not quite as well-developed as MATLAB’s, but all of the

examples given in this session will work in Octave.

MATLAB is an interpretive environment – you type a

command and it will execute it immediately. Nonethe-

less, one can group a set of commands together into a

script or function file.

The details given below cover just enough of the funda-

mentals to get started. For further reading I suggest the

following books. In particular, the first is freely available.

• Cleve B. Moler, Numerical Computing with MAT-

LAB ([Moler, 2004]). Written by the creator of

MATLAB, it mixes MATLAB programming with

theory and algorithms of numerical methods. Also

freely available from the MathWorks site.

• Tobin A. Driscoll, Learning MATLAB ([Driscoll, 2009]).

An excellent primer if you are just starting to learn

MATLAB.

• Desmond Higham and Nicholas Higham, MATLAB

Guide ([Higham and Higham, 2005]), is detailed and

well-written. If you know a little MATLAB, this is

a great book to help you develop your skills and

deepen you knowledge.

1 The Basics

1.1. In MATLAB, everything is a matrix. A scalar vari-

able is just a 1 × 1 matrix. To check this set, say,

t = 10, and use the size() command to find the

numbers of rows and columns of t.

1.2. To declare a row-vector array, try:

>> x=[-4, -3, -2, -1, 0, 1, 2, 3, 4]

Or, more simply,

>> x=-4:4

To access, say, the 3rd entry

>> x(3)

1.3. We usually like to think of vectors as column vectors.

To define one, try

>> x=[1;2;3]

Or you can take the (Hermitian) transpose of a row

vector: >> x = [1,2,3]’;

Verify that is the Hermitian transpose by defining a

complex-valued vector, and looking at its transpose:

>> i = sqrt(-1); x=[i, 1+i, 2]

>> x’

1.4. If you put a semicolon at the end of a line of MAT-

LAB, the line is executed, but the output is not

shown. (This is useful if you are dealing with large

vectors). If no semicolon is used, the output is

shown in the command window.

1.5. We’ll often want to run a collection of commands

repeatedly. So, rather than type them individually,

create a file containing the following code

x=-4:4

for i=1:9

y(i) = cos(x(i));

end

plot(x,y);

Save this as, say class1.m. To execute it, just type

>> class1 in the MATLAB command window.

Your file is an example of a MATLAB script file.

1.6. If the picture isn’t particularly impressive, then this

might be because MATLAB is actually only printing

the 9 points that you defined. To make this more

clear, use

plot(x, y, ’-o’)

This means to plot the vector y as a function of the

vector x, placing a circle at each point, and joining

adjacent points with a straight line.

1.7. The plot generated is not particularly good. The

points plotted are a unit apart. To get a better pic-

ture, try “easy plot” >> ezplot(@cos,[-4,4])

1.8. A row vector may be declared as follows:

>> x = a:h:b;

This sets x1 = a, x2 = a+h, x3 = x+2h, ..., xn = b.

If h is omitted, it is assumed to be 1.

1.9. The script file from Part (5) is a little redundant.

In MATLAB, most functions can take a vector or

matrix as an argument. So, in fact, we can just use

>> y = cos(x)

which sets y to be a vector such that yi = cos(xi).

1.10. The * operator performs matrix-matrix multiplica-

tion. So, to compute the inner product of the (col-

umn) vector x, try >> IP = x’*x;

http://uk.mathworks.com/moler/index_ncm.html

2 MATRICES 2

For element-by-element multiplication use .* For

example, y = x.*x sets yi = (xi)
2.

So does y = x.^2.

2 Matrices

2.1. Declare a Matrix as

>> A = [3 -1 ; -2 3]

2.2. The entry in row i and column j of a matrix is given

by A(i,j)

The ith row of matrixA can be addressed as A(i,:),

and the jth column as A(:, j).

2.3. To compute the inverse of a matrix (where possible)

>> inv(A)

ans =

4.2857e-01 1.4286e-01

2.8571e-01 4.2857e-01

Other common linear algebra functions are also avail-

able, e.g., det, trace, rank .

2.4. To compute the Singular Value Decomposition of a

matrix, use svd. It can be used in two ways:

>> sigma = svd(A) returns the singular val-

ues of A and stores them in the vector sigma.

>> [U,Sigma,V] = svd(A)

computes that factorisation (in MATLAB notation)

A=U*Sigma*V’

2.5. Other useful functions include

• >> A = rand(m,n) – creates a matrix with

(uniformly distributed) random entries. Use

randn to get normally distributed entries. The

functions zeros(m,n) and ones(m,n) return

decidedly nonrandom matrices.

• >> I = eye(n) – identity matrix

• >> Z = complex(A,B) – where A and B

are real matrices of the same size, sets Z =

A+ iB.

• >> E = eig(A) – (tries) to return the eigen-

values of A.

• >> norm(x) computes the 2-norm of the vec-

tor (or Matrix) x. norm(x,p) computes the p-

norm, and norm(x, inf) returns ‖x‖∞.

>> norm(A, ’fro’) computes the Frobenius

norm of the matrix A.

2.6. It A is an n × n matrix, and b is a vector with n

entries, we can solve Ax = b using x = A\b.

2.7. Many of the matrices one encounters, e.g., when

solving boundary values problems are sparse, mean-

ing that they have relatively few non-zero entries. In

that case, by defining a matrix to be sparse, great

efficiencies can be achieved. More about this later...

3 Functions

In MATLAB, you can write your own functions in several

ways, including,

Anonymous functions: Used for simple functions (one

line of code), e.g.,

>> f = @(x)sin(pi*x)

Try >> ezplot(f,[-4,4])

For functions of two (or more) variables, the syntax

is >> z = @(x,y)(exp(-x).*y.*(1-y)) Try:

>> [X,Y]=meshgrid(linspace(0,1));

>> mesh(z(X,Y)) or >> surf(z(X,Y))

Function files: Create a file called say, MyFunction.m.

Its first line should have the keyword function,

followed by the return values, the function name

(same as the file), and the argument list:

1 function [OutputArgs] = FileName (InputArgs)

For example, the following function takes a vector

as its argument, and if it is not a column vector,

returns its transpose.

1 function v = tocolumn (x)

2 i f (min(s ize (x)) ˜= 1 | | s ize (x , 1)==2)

3 v=x ;

4 else

5 v=x ’ ;

6 end

4 Initial value problems

4.1. Solving ODEs. MATLAB/Octave has a set of

numerical ODE solvers. Some are specialised; the

work-horse is ode45. The general form on an ini-

tial value problem (IVP) is:

y ′(t) = f(t,y) t > t0

y(t0) = y0.

We’ll try and solve a particular example: y(0) = 1,

and

y ′(t) = y sin(t) t > 0,

on the interval [0, 4]. The exact solution is y(t) =

e1−cos(t).

First we define the RHS: >> f = @(t,y)(y.*sin(t));

Then solve the ODE: >> [T,Y] = ode45(f,[0,4],1);

Now define the true solution (for comparison):

>> y true = @(t)exp(1-cos(t));

And the plot the true and approximate solutions:

>> plot(T, Y, T, y true(T),’--o’)

Or their difference:

>> plot(T, Y-y true(T),’-o’)

4.2. Solving Coupled IVPs The approach for solving

single equations easily extends to systems, such as

y ′
1(t) = y2(t) sin(t), y1(0) = 1

y ′
2(t) = −10y1(t), y2(0) = 0.

5 BOUNDARY VALUE PROBLEMS 3

The trick is to define the function, f, so that it re-

turns a vector:

>> f = @(t,y)([y(2).*sin(t);-10*y(1)])

Then solve on (for example) [0, 3]:

>> [t,y] = ode45(f,[0,3],[1,0]); Notice that

we had to provide the initial value as a vector too.

To plot the solutions:

>> plot(t,y(:,1), t,y(:,2),’--’)

5 Boundary value problems

The general form a second-order, two point, linear BVP

is

−u ′′(x) + b(x)u(x) = f(x) 0 < x < 1

u(0) = α, u(1) = β.

There are built-in functions for solving these, but we’ll

look at how to solve them using our own finite difference

method.

5.1 The algorithm

• Choose N, the number of mesh intervals

• Set up a set of N+ 1 equally spaced points:

0 = x0 < x1 < x2 < x3 · · · < xn−1 < xn = 1.

• Construct A, a (N+ 1)× (N+ 1) matrix of zeros,

except for

– A1,1 = 1

– For i = 2, 3, . . . ,N

Ai,j =

−1/h2 j = i− 1

2/h2 + bk j = i

−1/h2 j = i+ 1

0 otherwise.

– AN,N+1 = 1

In MATLAB this could be implemented as

A(1 ,1) = 1 ;

for i =2:N

A(i , i −1) = −1/hˆ2 ;

A(i , i) = 2/hˆ2 + r (x (i)) ;

A(i , i +1) = −1/hˆ2 ;

end

A(N+1,N+1)=1;

(We would not do this in practice: it is very slow).

• Solve the linear system: u = A \ B

where B(i)=f(x(i)).

Download the script FiniteDifference.m from http://

www.maths.nuigalway.ie/~niall/NASPDEs2016/ and try

it out.

Consider the problem:

−u ′′(x) + u(x) = 1 + x on (0, 1), u(0) = u(1) = 0.

The solution to this is

u(x) = 1 + x−
(
e−x(e2 − 2e) + ex(2e− 1)

)
/(e2 − 1).

Use this to test the code. In particular, does the error

tend to zero as N→∞? If so, how rapidly? (These two

questions can also be rephrased as “Does the method

converge? If so, how quickly?)

5.2 The Profiler

This is not a good way to construct a linear system.

Whenever you write a MATLAB program, particularly

for solving differential equations, you should use the pro-

filer to find any bottle-necks in the code.

If most of the time is not spent solving the linear system,

then there is a problem.

Another simple method for code-timing are the tic and

toc functions.

5.3 Some Optimisations

To improve, and speed up this code, initialise the matrix

A and vector b:

A = zeros(N+1, N+1); b = zeros(N+1,1)

However, the real improvement is to avoid using loops to

initialise matrices or vectors.

For vectors, this is easy:
b = [alpha; r(x(2:N)); beta];

For Matrices, we need sparse matrices. To initialise:
A = sparse(N+1, N+1);

However, the best way to use it is as:
S = sparse(i,j,s)

which sets S(i(k),j(k)) = s(k). This can be used as
follows:

A = sparse(2:N, 1:N-1, -1/h^2) + ...

sparse(2:N, 2:N, 2/h^2+r(x(2:N))) + ...

sparse(2:N, 3:N+1, -1/h^2);

6 References

References

[Driscoll, 2009] Driscoll, T. A. (2009). Learning MAT-

LAB. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA.

[Higham and Higham, 2005] Higham, D. J. and Higham,

N. J. (2005). MATLAB Guide. Second edition.

[Moler, 2004] Moler, C. B. (2004). Numerical computing

with MATLAB. Society for Industrial and Applied

Mathematics, Philadelphia, PA.

http://www.maths.nuigalway.ie/~niall/NASPDEs2016/FiniteDifference.m
http://www.maths.nuigalway.ie/~niall/NASPDEs2016/
http://www.maths.nuigalway.ie/~niall/NASPDEs2016/

	The Basics
	Matrices
	Functions
	Initial value problems
	Boundary value problems
	The algorithm
	The Profiler
	Some Optimisations

	References

