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Outline

Monday, 25 July [ Tuesday, 26 July
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09:15 1. Introduction to singularly perturbed 5. PDEs (i): time-dependent problems.
problems
10:00 Break
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15:15 | 3. Coupled systems (continued) 9. Nonlinear problems (Kopteva)
16:15 | 4. Lab 1 | 10. Lab 2 (PDEs)
17:30 Finish
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Primary references

The main mathematical content of this presentation, starting at Slide 21,
closely follows [Miller et al., 1996] and [Miller et al., 2012].

The definition of parameter uniformity (Slides 16-18) is from
[Farrell et al., 2000].

Important secondary references include [Protter and Weinberger, 1984].
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A reaction-diffusion problem

Let's recall our first example of a singularly perturbed reaction-diffusion
equation.

—2u”’(x) +b(x)u(x) = f(x), on Q =(0,1), J

m ¢ is (still) a small parameter; it may take any value in (0, 1].
m There is B > 0 such that b(x) > p > 0.
m Boundary conditions: u(0) =u(1) =0

3
—epsilon = 22
G o4
25l epsilon =2 .
—epsilon =2~
" -8
epsilon =2
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A reaction-diffusion problem Uniform Convergence (heuristic)

In general, one must approximate the solutions to such problems by some
numerical scheme.

A “Parameter Robust’ or “Uniformly Convergent’ method is one that yields an
approximation U of u, such that one can prove an error estimate of the form

hu—Uj < CNP

where C, p (“rate of convergence”) are independent of the perturbation
parameter ¢, and discretization parameter N. This should be valid for all
e € (0,1] and all N.

In particular, one should not have to assume that, for example, N = O(1/¢).

It is also desirable that any layer present should be resolved.

“ "

This explanation of “uniform convergence” is heuristic, (and we have not even
specified || - ||). The concept will be will be made formal later.
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A reaction-diffusion problem A simple FDM

The simplest numerical scheme one could apply to this problem is a
second-order finite difference scheme on a uniform mesh.

m On the interval Q = [0, 1], form a uniform mesh with N intervals:

QN ={x N, where x; =i/N =ih;
m Approximate u” as

1
=3 (wlxio1) — 2u(xq) + w(xi1)) +C [[u® | N2,
——

"

O(e—4
5%u(xy) 0

m Construct and solve the linear system

—e28%U; + b(xi) Uy = f(x4), i=1,...,N—1
Uy =0.
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A reaction-diffusion problem A simple FDM

If we implement the above finite difference method, and then calculate the
maximum point-wise error, we get the following results.

max|u(x;) — U;|  where u solves — e?u” +u = e*.
1

€2 N =64 N =128 N = 256 N =512

1 7.447e-06 | 1.861e-06 | 4.654e-07 | 1.163e-07
102 1.023e-03 | 2.568e-04 | 6.424e-05 | 1.607e-05
104 7.689e-02 | 2.338e-02 | 6.192e-03 | 1.583e-03
10-¢ 1.104e-02 | 4.203e-02 | 1.033e-01 | 9.666e-02
10-8 1.113e-04 | 4.452e-04 | 1.779e-03 | 7.088e-03
10710 || 1.113e-06 | 4.453e-06 | 1.781e-05 | 7.125e-05
10712 || 1.113e-08 | 4.453e-08 | 1.781e-07 | 7.125e-07

We observe that,
m for small fixed N the error decreases as ¢ decreases (counter-intuitive)

m for small fixed ¢, the error increases as N increases (i.e., not converging)
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A reaction-diffusion problem

A simple FDM

Comparing “convergence” for different values

of €. J
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max [u(x;) — Uy
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A reaction-diffusion problem

A simple FDM

Why, for small fixed N, does the error appear to decrease as ¢ is reduced?

We fix N = 32 and take ¢ =1072,10°%,...,10719.

33—

—u(x)
—--U

2.5f

epsilon = 212

0

The pointwise errors are small because the layer is not

0.2 0.4 0.6

0.8

resolved.
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A reaction-diffusion problem A simple FDM

Why, for small fixed ¢, does the error appear to increase as N is increased? )

We fix ¢ =271 and take N = 32,64, 128, .... As N approaches ¢}, the
method begins to resolve the layer, and so the computed pointwise error
increases.

N = 256

—u(x)
—--U

0 0.01 0.02 0.03 0.04
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A reaction-diffusion problem A simple FDM

Motivated by the previous graphs, we compute the difference between the true
solution and the piecewise linear interpolant to the approximation.

Jmax fu(x) —U(x)|

€2 N=64 | N=128 | N=256 | N =512

1 3.75e-01 | 3.75e-01 | 3.75e-01 | 3.75e-01
le-02 || 3.77e-01 | 3.75e-01 | 3.75e-01 | 3.75e-01
le-04 || 4.62e-01 | 4.06e-01 | 3.84e-01 | 3.78e-01
1e-06 || 7.30e-01 | 6.86e-01 | 5.94e-01 | 4.89e-01
1le-08 7.50e-01 | 7.49e-01 | 7.47e-01 | 7.37e-01
le-10 || 7.50e-01 | 7.50e-01 | 7.50e-01 | 7.50e-01
le-12 || 7.50e-01 | 7.50e-01 | 7.50e-01 | 7.50e-01

We can conclude from this that the method given here is not suitable for this
problem.

Most of the remainder of this section will be given over to deriving and
analysing a method that is suitable.
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A reaction-diffusion problem What is going wrong here?

The differential equation is  —e?u” +bu =f.
From this we see that ||u”| is O(¢2).
If b is constant, by differentiating the DE, we get that |[u® || is O(¢*). (We
will do this more carefully for variable b later).
If standard arguments based on the truncation error are employed, one will find
that

lu—Uljoo < CNT2(14¢72).

(This bound suggests that this method is inappropriate for this problem, which
is true; but it is not sharp. We will return to this point later).
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A convection-diffusion problem

Before we study the reaction-diffusion problem in greater depth, we take a
detour to point out that things could be much, much worse.

The numerical method presented above yields a reasonable solution to the
reaction-diffusion problem away from layers.

If we apply the method to the obvious convection-diffusion problem, the
resulting solution can be unstable.

Again we start with the uniform mesh with N intervals:

oN .= {xi}]i\lzo, where x; = 1/N = ih;

And again approximate u” as u” = &%u(x;) + KoN72.

We approximate 1’ by the corresponding second-order central difference scheme

1
u' = ﬁ(_ u(xi) +u(xi+1)) +K N2,

D%u(x)
The finite difference method is then

7562Ui+a(xi)D°Ui :f(Xi), i= 1,...,N —1.
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A convection-diffusion problem

A convection-diffusion problem

—eu’(x)+u'(x)=1+x%, onQ=(0,1), with u(0)=u(1)=0

2.5 = = = True solution, eps= el
—e—FD solution

0.5r
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Uniform convergence

We have seen that the two simplest methods for reaction-diffusion and
convection-diffusion problems are inadequate.

Before constructing a method that is adequate, we need a concept of what
“adequate” means.

Although it is possible to design a method that gives a “reasonable” solution
for a fixed, small ¢, we want to investigate schemes which are accurate for all
e € (0,1].

Furthermore, the scheme should not rely on choosing some large N = N(¢) in
order to ensure accuracy.

That is...

[Farrell et al., 2000, p10]

. we undertake ... the task of constructing numerical methods that generate
numerical solutions which converge uniformly for all values of the parameter ¢
in the range (0, 1], and that require a parameter-uniform amount of
computational work to compute each numerical solution.

Such methods are called parameter uniform or e-uniform methods.
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Uniform convergence

[Farrell et al., 2000, p10]

If a method is e-uniform, the error between the exact solution, u, and the
numerical solution U, satisfies an estimate of the following form: for some
positive integer Ng, all integers N > Ny, and all € € (0, 1], we have

lu—Ujg < CNP.

where C, Ng and p are positive constants independent of ¢ and N.

Here U is taken to be a mesh function defined on some set of (mesh) points in
the domain Q, and U is its piecewise linear interpolant. The norm |ju—U||5 is
the maximum norm.
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Uniform convergence Layer resolving

In the above discussion,

m the emphasis on the maximum norm comes from the fact that other
norms, particularly energy norms for simple Galerkin FEMs, are not strong
enough to identify layers.

m the interpolant of the numerical solution features since, as we have seen, if
there are no mesh points within the layer, the solution can appear highly
accurate.

So [Farrell et al., 2000] propose that methods for SPPs should be

(1) global: yielding an approximation that can be evaluated at all points in the
domain;

—_
N
~

point-wise accurate,
(3) parameter uniform (independent of ¢ and computational effort)

(4) monotone (discrete operator respects key qualitative properties of the
continuous operator).
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Analysis

The reminder of this section of the presentation is given over to the
mathematical analysis of solutions to one-dimensional reaction-diffusion
equations, and finite difference methods for approximating them.

Notation

The following notation applies in the remainder of this section.
m Q:=(0,1).
B QN ={0=x¢,%1,...,xn = 1} is a (possibly arbitrary) mesh with N
intervals.
QN denotes the interior of this mesh, i.e., QN ={x1, ..., xn_1}.

m ||| is the maximum norm on €(Q). That is |[ul| := |[u,a = Jmax lu(x)].
XX

m |- |lan is the discrete max norm for mesh functions on QN.

Always: C is a constant that is independent of ¢ and N. It can take
different values in different places — even in the same expression.
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Analysis

Definition (Differential operator £)

Let O := (0,1). Given the function b € C*(Q), subject to b(x) > B2 > 0, and
parameter ¢ € (0, 1], the differential operator £ is defined, for all P € C?(Q) as

L =—e2p” + b

Definition (Reaction-diffusion equation)

Let u be the solution to
Lu=fon (0,1), with boundary conditions u(0) = u(1) =0, (1)

where f € C4(Q)).

The imposition of homogeneous Dirichlet boundary conditions is only to
simplify the exposition. Results are easily extended to more general situations.
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Maximum principles

The following result is very standard, and elementary, but worth considering in
detail in order to be able to generalise later.

Maximum Principle If $(0) > 0, $(1) > 0, and L(x) > 0 for all x € Q, then
d(x) >0 forall x € Q.

[arguments on the board)|
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Maximum principles

There are many useful consequences of this. For example:
It easily follows that, if Lu =f and u(0) =u(1) =0, then

u(x) < |If]l/B>.

[arguments on the board]
(Here W = ||f|| /B2 is called a barrier function; we'll see more of these).

This shows that u is bounded. But for the analysis of a finite difference method, we
need bounds on derivatives of .
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Bounds on derivatives

Lemma (Lemma 6.1 of [Miller et al., 2012])

[u]| < C(1+ 7).

[arguments on the board]
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Bounds on derivatives

The above bounds are correct, but not at all sharp: one expects that
[u”(x)| = €72 only near the boundary.

Our numerical analysis will require sharper, point-wise bounds obtained via a
decomposition of the solution of the DE as the sum of “regular” and “layer”
components:
u= v _ + w .
—~ =~

regular layer
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Solution decomposition

Solution decomposition

regular layer

2.5] 2.5 2.5]
2| 2] 2]
1.5/ —_ 1.5 1.5
1 1 1
0.5 0.5] 0.5 \
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 [ 0.2 0.4 06 0.8 1
Roughly,

m v represents the solution away from the boundaries, but any layers present
are only weakly expressed.

m W accounts for the boundary conditions and, thus, the boundary layers,
but decays rapidly away from the boundaries.
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Solution decomposition Regular component

Definition (Reduced problem)

To get the reduced problem, set € = 0 in the reaction-diffusion equation (1),
and neglect the boundary conditions. That is, let vy be the solution to

b(x)vo(x) = f(x).

Regular part

Let v = vy + €2v;, where Vg is the reduced solution, and v; solves

Ly =v{, v1(0) =v1(1) = 0.

From our earlier lemma, it is clear that \V;(lk)(xﬂ < C(14e7%).
It follows that [v(¥) (x)] < C(1 4 ¢ **2).
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Solution decomposition Layer component

Layer part

Since u =w + v, we have that w satisfies the homogeneous DE

—&2w” +bw=0o0n Q, w=u—vondQ

Define the boundary layer function
Be(x) :=exp(—xp/e) + exp(—(1 —x)B/¢).
Also define the barrier function
b*(x) = CB.(x) £ w(x)

for some suitable large C so that ¥ is non-negative on the boundary. Then
the Maximum Principle shows that [w(x)| < B.(x) on Q.
Now a minor variant on the argument that was used to bound [u™)| will give

that
W (x)] < Ce B, (x).
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The FDM and Shishkin mesh The FDM

The above solution decomposition tells use that the derivatives of u are large,
but decay rapidly away from the boundaries. So it will be of no surprise to
learn that there is a good strategy for solving these problems that involves a
mesh condensing near those boundaries.

First, for an arbitrary mesh ON ={xg,X1, ..., Xn} the standard second-order
finite-difference operator becomes

(62\))‘ _ 2 (Vi+1 —Vi Vi 7Vi71) '
Vohiathy hij1 hy

where hy = x; — Xxi_1.

It satisfies

E.g., [Miller et al., 2012, Lemma 4.1]

(Xi41 —Xi-1)|dls.
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The FDM and Shishkin mesh The FDM

Then the FDM is

Up =0,
LNU; = —25%U; + b(x) Uy = f(xy), i=1,...,N—1,
Uy =0.

This operator satisfies a discrete maximum principle, and an ¢-uniform stability
result: if Ug = Uy = 0, then

LHENS \L @;.
[5

[arguments on the board]
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The FDM and Shishkin mesh The mesh

The piecewise uniform mesh of Shishkin is constructed as follows!:

1. Choose a mesh transition point

T, :min{%, % InN}.

2. Divide the domain into three sub-regions: [0, t.], [T.,1—7T.] and [1 — T, 1].

3. Subdivide those sub-regions to obtain the mesh.

1This choice is for the purpose of exposition. It is better to choose T. = min{1/4,2¢/B InN}.
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Analysis

Theorem (Theorem 6.4 of [Miller et al., 1996])

There is a constant C that is independent of ¢ and N such that

Huf UHQN < CN7'InN.

The proof proceeds by constructing a decomposition of the discrete solution
U =V + W that is analogous to the decomposition of the continuous solution:

V solves Vo =v(0), LNV, =1f(xi), Vn=v(1),
W solves Wo =w(0), LMW, =0, Wy =w(1).

We analyse these terms separately, i.e., we estimate |[v— V|| and |[w —W/||.
For ||[v—V/||... [arguments on the board]
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Analysis

On the region (0, T.) U (1 — 7, 1) the analysis for |[w — W/ is analogous...
[arguments on the board]
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Analysis

Finally, on the region [t.,1 — T.] one can exploit the fact that w and W have
decayed. In particular, for any x; € [t,1 —1]

B (xi) < Be(1) < 2exp(—1h/€) < 2exp(—InN) < CN7L.

[arguments on the board)]
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Wrap up

m The significance of the above result is that we have designed a scheme for
which we can prove that the pointwise error is independent of ¢.

m The result is easily extended to show that ||u— U|| < CN~!InN.

m The result is correct, but not sharp. Can the scheme and analysis be
improved so that [u— U|[an < CN72In? N? [Discuss!]

m The approach here, of using a piecewise uniform mesh, is very elementary.
A more sophisticated mesh, such as the graded mesh of Bakhvalov, can
yield a fully second-order scheme.
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