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Outline

Monday, 25 July Tuesday, 26 July
09:00 Welcome/Coffee
09:15 1. Introduction to singularly perturbed

problems
5. PDEs (i): time-dependent problems.

10:00 Break
10:15 2. Numerical methods and uniform

convergence; FDMs and their analysis.
6. PDEs (ii): elliptic problems
7. Finite Element Methods

12:00 Lunch
14:00 3. Coupled systems 8. Convection-diffusion (Stynes)
15:00 Break
15:15 3. Coupled systems (continued) 9. Nonlinear problems (Kopteva)
16:15 4. Lab 1 10. Lab 2 (PDEs)
17:30 Finish
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Primary references

The main mathematical content of this presentation, starting at Slide 21,
closely follows [Miller et al., 1996] and [Miller et al., 2012].

The definition of parameter uniformity (Slides 16–18) is from
[Farrell et al., 2000].

Important secondary references include [Protter and Weinberger, 1984].
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A reaction-diffusion problem

Let’s recall our first example of a singularly perturbed reaction-diffusion
equation.

−ε2u ′′(x) + b(x)u(x) = f(x), on Ω = (0, 1),

ε is (still) a small parameter; it may take any value in (0, 1].
There is β > 0 such that b(x) > β > 0.
Boundary conditions: u(0) = u(1) = 0
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A reaction-diffusion problem Uniform Convergence (heuristic)

In general, one must approximate the solutions to such problems by some
numerical scheme.

A “Parameter Robust” or “Uniformly Convergent” method is one that yields an
approximation U of u, such that one can prove an error estimate of the form

‖u−U‖ 6 CN−p

where C, p (“rate of convergence”) are independent of the perturbation
parameter ε, and discretization parameter N. This should be valid for all
ε ∈ (0, 1] and all N.

In particular, one should not have to assume that, for example, N = O(1/ε).

It is also desirable that any layer present should be resolved.

This explanation of “
::::::
uniform

::::::::::
convergence” is heuristic, (and we have not even

specified ‖ · ‖). The concept will be will be made formal later.
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A reaction-diffusion problem A simple FDM

The simplest numerical scheme one could apply to this problem is a
second-order finite difference scheme on a uniform mesh.

On the interval Ω = [0, 1], form a uniform mesh with N intervals:

ΩN := {xi}
N
i=0, where xi = i/N = ih;

Approximate u ′′ as

u ′′ =
1

h2

(
u(xi−1) − 2u(xi) + u(xi+1)

)
︸ ︷︷ ︸

δ2u(xi)

+C ‖u(4)‖︸ ︷︷ ︸
O(ε−4)

N−2.

Construct and solve the linear system

U0 = 0,

−ε2δ2Ui + b(xi)Ui = f(xi), i = 1, . . . ,N− 1

UN = 0.
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A reaction-diffusion problem A simple FDM

If we implement the above finite difference method, and then calculate the
maximum point-wise error, we get the following results.

max
i

|u(xi) −Ui| where u solves − ε2u ′′ + u = ex.

ε2 N = 64 N = 128 N = 256 N = 512
1 7.447e-06 1.861e-06 4.654e-07 1.163e-07

10−2 1.023e-03 2.568e-04 6.424e-05 1.607e-05
10−4 7.689e-02 2.338e-02 6.192e-03 1.583e-03
10−6 1.104e-02 4.203e-02 1.033e-01 9.666e-02
10−8 1.113e-04 4.452e-04 1.779e-03 7.088e-03
10−10 1.113e-06 4.453e-06 1.781e-05 7.125e-05
10−12 1.113e-08 4.453e-08 1.781e-07 7.125e-07

We observe that,

for small fixed N the error decreases as ε decreases (counter-intuitive)

for small fixed ε, the error increases as N increases (i.e., not converging)
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A reaction-diffusion problem A simple FDM

Comparing “convergence” for different values of ε.

max
i

|u(xi) −Ui|
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A reaction-diffusion problem A simple FDM

Why, for small fixed N, does the error appear to decrease as ε is reduced?

We fix N = 32 and take ε = 10−2, 10−4, . . . , 10−10.
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The pointwise errors are small because the layer is not resolved.
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A reaction-diffusion problem A simple FDM

Why, for small fixed ε, does the error appear to increase as N is increased?

We fix ε = 2−10 and take N = 32, 64, 128, . . .. As N approaches ε−1, the
method begins to resolve the layer, and so the computed pointwise error
increases.
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A reaction-diffusion problem A simple FDM

Motivated by the previous graphs, we compute the difference between the true
solution and the piecewise linear interpolant to the approximation.

max
06x61

|u(x) − Ū(x)|

ε2 N = 64 N = 128 N = 256 N = 512
1 3.75e-01 3.75e-01 3.75e-01 3.75e-01

1e-02 3.77e-01 3.75e-01 3.75e-01 3.75e-01
1e-04 4.62e-01 4.06e-01 3.84e-01 3.78e-01
1e-06 7.30e-01 6.86e-01 5.94e-01 4.89e-01
1e-08 7.50e-01 7.49e-01 7.47e-01 7.37e-01
1e-10 7.50e-01 7.50e-01 7.50e-01 7.50e-01
1e-12 7.50e-01 7.50e-01 7.50e-01 7.50e-01

We can conclude from this that the method given here is not suitable for this
problem.

Most of the remainder of this section will be given over to deriving and
analysing a method that is suitable.
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A reaction-diffusion problem What is going wrong here?

The differential equation is −ε2u ′′ + bu = f.
From this we see that ‖u ′′‖ is O(ε−2).
If b is constant, by differentiating the DE, we get that ‖u(4)‖ is O(ε−4). (We
will do this more carefully for variable b later).

If standard arguments based on the truncation error are employed, one will find
that

‖u−U‖∞ 6 CN−2(1 + ε−2).

(This bound suggests that this method is inappropriate for this problem, which
is true; but it is not sharp. We will return to this point later).
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A convection-diffusion problem

Before we study the reaction-diffusion problem in greater depth, we take a
detour to point out that things could be much, much worse.

The numerical method presented above yields a reasonable solution to the
reaction-diffusion problem away from layers.

If we apply the method to the obvious convection-diffusion problem, the
resulting solution can be unstable.

Again we start with the uniform mesh with N intervals:

ΩN := {xi}
N
i=0, where xi = i/N = ih;

And again approximate u ′′ as u ′′ = δ2u(xi) + K2N
−2.

We approximate u ′ by the corresponding second-order central difference scheme

u ′ =
1

2h

(
− u(xi) + u(xi+1)

)
︸ ︷︷ ︸

D0u(xi)

+K1N
−2.

The finite difference method is then

−εδ2Ui + a(xi)D
0Ui = f(xi), i = 1, . . . ,N− 1.
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A convection-diffusion problem

A convection-diffusion problem

−εu ′′(x) + u ′(x) = 1 + x, on Ω = (0, 1), with u(0)=u(1)=0
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Uniform convergence

We have seen that the two simplest methods for reaction-diffusion and
convection-diffusion problems are inadequate.

Before constructing a method that is adequate, we need a concept of what
“adequate” means.

Although it is possible to design a method that gives a “reasonable” solution
for a fixed, small ε, we want to investigate schemes which are accurate for all
ε ∈ (0, 1].

Furthermore, the scheme should not rely on choosing some large N = N(ε) in
order to ensure accuracy.

That is...

[Farrell et al., 2000, p10]

... we undertake ... the task of constructing numerical methods that generate
numerical solutions which converge uniformly for all values of the parameter ε
in the range (0, 1], and that require a parameter-uniform amount of
computational work to compute each numerical solution.
Such methods are called parameter uniform or ε-uniform methods.
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Uniform convergence

[Farrell et al., 2000, p10]

If a method is ε-uniform, the error between the exact solution, u, and the
numerical solution U, satisfies an estimate of the following form: for some
positive integer N0, all integers N > N0, and all ε ∈ (0, 1], we have

‖u− Ū‖Ω̄ 6 CN−p.

where C, N0 and p are positive constants independent of ε and N.

Here U is taken to be a mesh function defined on some set of (mesh) points in
the domain Ω̄, and Ū is its piecewise linear interpolant. The norm ‖u− Ū‖Ω̄ is
the maximum norm.
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Uniform convergence Layer resolving

In the above discussion,

the emphasis on the maximum norm comes from the fact that other
norms, particularly energy norms for simple Galerkin FEMs, are not strong
enough to identify layers.

the interpolant of the numerical solution features since, as we have seen, if
there are no mesh points within the layer, the solution can appear highly
accurate.

So [Farrell et al., 2000] propose that methods for SPPs should be

(1) global: yielding an approximation that can be evaluated at all points in the
domain;

(2) point-wise accurate,

(3) parameter uniform (independent of ε and computational effort)

(4) monotone (discrete operator respects key qualitative properties of the
continuous operator).
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Analysis

The reminder of this section of the presentation is given over to the
mathematical analysis of solutions to one-dimensional reaction-diffusion
equations, and finite difference methods for approximating them.

Notation

The following notation applies in the remainder of this section.

Ω := (0, 1).

Ω̄N = {0 = x0, x1, . . . , xN = 1} is a (possibly arbitrary) mesh with N
intervals.
ΩN denotes the interior of this mesh, i.e., ΩN = {x1, . . . , xN−1}.

‖ · ‖ is the maximum norm on C(Ω̄). That is ‖u‖ := ‖u‖∞,Ω̄ = max
06x61

|u(x)|.

‖ · ‖Ω̄N is the discrete max norm for mesh functions on ΩN.

Always: C is a constant that is independent of ε and N. It can take
different values in different places – even in the same expression.
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Analysis

Definition (Differential operator L)

Let Ω := (0, 1). Given the function b ∈ C4(Ω̄), subject to b(x) > β2 > 0, and
parameter ε ∈ (0, 1], the differential operator L is defined, for all ψ ∈ C2(Ω̄) as

Lψ = −ε2ψ ′′ + bψ

Definition (Reaction-diffusion equation)

Let u be the solution to

Lu = f on (0, 1), with boundary conditions u(0) = u(1) = 0, (1)

where f ∈ C4(Ω̄).

The imposition of homogeneous Dirichlet boundary conditions is only to
simplify the exposition. Results are easily extended to more general situations.
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Maximum principles

The following result is very standard, and elementary, but worth considering in
detail in order to be able to generalise later.

Lemma

Maximum Principle If φ(0) > 0, φ(1) > 0, and Lψ(x) > 0 for all x ∈ Ω, then
φ(x) > 0 for all x ∈ Ω̄.

[arguments on the board]
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Maximum principles

There are many useful consequences of this. For example:

It easily follows that, if Lu = f and u(0) = u(1) = 0, then

u(x) 6 ‖f‖/β2.

[arguments on the board]

(Here ψ = ‖f‖/β2 is called a barrier function; we’ll see more of these).

This shows that u is bounded. But for the analysis of a finite difference method, we
need bounds on derivatives of u.
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Bounds on derivatives

Lemma (Lemma 6.1 of [Miller et al., 2012])

‖u(k)‖ 6 C(1 + ε−k).

[arguments on the board]
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Bounds on derivatives

The above bounds are correct, but not at all sharp: one expects that
|u ′′(x)| ≈ ε−2 only near the boundary.

Our numerical analysis will require sharper, point-wise bounds obtained via a
decomposition of the solution of the DE as the sum of “regular” and “layer”
components:

u = v︸︷︷︸
regular

+ w︸︷︷︸
layer

.
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Solution decomposition

Solution decomposition

u = v︸︷︷︸
regular

+ w︸︷︷︸
layer

.
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Roughly,

v represents the solution away from the boundaries, but any layers present
are only weakly expressed.

w accounts for the boundary conditions and, thus, the boundary layers,
but decays rapidly away from the boundaries.
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Solution decomposition Regular component

Definition (Reduced problem)

To get the reduced problem, set ε = 0 in the reaction-diffusion equation (1),
and neglect the boundary conditions. That is, let v0 be the solution to

b(x)v0(x) = f(x).

Regular part

Let v = v0 + ε
2v1, where v0 is the reduced solution, and v1 solves

Lv1 = v ′′0 , v1(0) = v1(1) = 0.

From our earlier lemma, it is clear that |v
(k)
1 (x)| 6 C(1 + ε−k).

It follows that |v(k)(x)| 6 C(1 + ε−k+2).

AARMS-CRM Workshop on NA of SPDEs, July 2016: §2 SPDEs+Uniform Conv 26/35



Solution decomposition Layer component

Layer part

Since u = w+ v, we have that w satisfies the homogeneous DE

−ε2w ′′ + bw = 0 on Ω, w = u− v on ∂Ω

Define the boundary layer function

Bε(x) := exp(−xβ/ε) + exp(−(1 − x)β/ε).

Also define the barrier function

ψ±(x) = CBε(x)±w(x)

for some suitable large C so that ψ± is non-negative on the boundary. Then
the Maximum Principle shows that |w(x)| 6 Bε(x) on Ω̄.

Now a minor variant on the argument that was used to bound |u(k)| will give
that

|w(k)(x)| 6 Cε−kBε(x).
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The FDM and Shishkin mesh The FDM

The above solution decomposition tells use that the derivatives of u are large,
but decay rapidly away from the boundaries. So it will be of no surprise to
learn that there is a good strategy for solving these problems that involves a
mesh condensing near those boundaries.

First, for an arbitrary mesh ΩN = {x0, x1, . . . , xn} the standard second-order
finite-difference operator becomes(

δ2v
)
i
=

2

hi+1 + hi

(
vi+1 − vi
hi+1

−
vi − vi−1

hi

)
.

where hi = xi − xi−1.

It satisfies

E.g., [Miller et al., 2012, Lemma 4.1]∣∣∣∣(δ2 −
d2

dx2

)
φ(xi)

∣∣∣∣ 6 1

3
(xi+1 − xi−1)|φ|3.
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The FDM and Shishkin mesh The FDM

Then the FDM is
U0 = 0,

LNUi := −ε2δ2Ui + b(xi)Ui = f(xi), i = 1, . . . ,N− 1,

UN = 0.

This operator satisfies a discrete maximum principle, and an ε-uniform stability
result: if U0 = UN = 0, then

|Φi| 6
1

β
max
i6j6N

|LNΦj|.

[arguments on the board]

AARMS-CRM Workshop on NA of SPDEs, July 2016: §2 SPDEs+Uniform Conv 29/35



The FDM and Shishkin mesh The mesh

The piecewise uniform mesh of Shishkin is constructed as follows1:

1. Choose a mesh transition point

τε = min

{
1

4
,
ε

β
lnN

}
.

2. Divide the domain into three sub-regions: [0, τε], [τε, 1 − τε] and [1 − τε, 1].

3. Subdivide those sub-regions to obtain the mesh.

0 1− τε 1

N/2N/4 N/4

τε

1This choice is for the purpose of exposition. It is better to choose τε = min{1/4, 2ε/β lnN}.
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Analysis

Theorem (Theorem 6.4 of [Miller et al., 1996])

There is a constant C that is independent of ε and N such that

‖u−U‖Ω̄N 6 CN−1 lnN.

The proof proceeds by constructing a decomposition of the discrete solution
U = V +W that is analogous to the decomposition of the continuous solution:

V solves V0 = v(0), LNVi = f(xi), VN = v(1),

W solves W0 = w(0), LNWi = 0, WN = w(1).

We analyse these terms separately, i.e., we estimate ‖v− V‖ and ‖w−W‖.
For ‖v− V‖... [arguments on the board]
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Analysis

On the region (0, τε) ∪ (1 − τε, 1) the analysis for ‖w−W‖ is analogous...
[arguments on the board]
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Analysis

Finally, on the region [τε, 1 − τε] one can exploit the fact that w and W have
decayed. In particular, for any xi ∈ [τ, 1 − τ]

Bε(xi) 6 Bε(τ) 6 2 exp(−τβ/ε) 6 2 exp(− lnN) 6 CN−1.

[arguments on the board]
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Wrap up

The significance of the above result is that we have designed a scheme for
which we can prove that the pointwise error is independent of ε.

The result is easily extended to show that ‖u− Ū‖ 6 CN−1 lnN.

The result is correct, but not sharp. Can the scheme and analysis be
improved so that ‖u−U‖Ω̄N 6 CN−2 ln2N? [Discuss!]

The approach here, of using a piecewise uniform mesh, is very elementary.
A more sophisticated mesh, such as the graded mesh of Bakhvalov, can
yield a fully second-order scheme.
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