```
AARMS-CRM Workshop on NA of SPDEs, July 2016
http://www.math.mun.ca/~smaclachlan/anasc_spde/
```

Short course on Numerical Analysis of Singularly Perturbed Differential Equations

Niall Madden, NUI Galway (Niall.Madden@NUIGalway.ie)

§6 PDEs (ii): Elliptic problems in two dimensions Ver

Version 26.07.16

Handout version.

	Monday, 25 July	Tuesday, 26 July
09:00	Welcome/Coffee	
09:15	1. Introduction to singularly perturbed	5. PDEs (i): time-dependent problems.
	problems	
10:00	Break	
10:15	2. Numerical methods and uniform	6. PDEs (ii): elliptic problems
	convergence; FDMs and their analysis.	7. Finite Element Methods
12:00	Lunch	
14:00	3. Coupled systems	8. Convection-diffusion (Stynes)
15:00	Break	
15:15	Coupled systems (continued)	9. Nonlinear problems (Kopteva)
16:15	4. Lab 1	10. Lab 2 (PDEs)
17:30	Finish	

(45 minutes)

In this section we will study the robust solution, by a finite difference method, of PDEs of the form

$$-\epsilon^2 \Delta u + bu = f \qquad \text{ on } \Omega := (0, 1)^d.$$

The focus is on d = 2, but many of the ideas for d = 3 are similar.

(Come to my talk later in the week to learn about that case!).

- **1** A 2D, SP, reaction-diffusion equation
- 2 Solution decomposition
 - The domain
 - Compatibility conditions
 - Extended domain
 - The regular component
 - Edge components
 - Corner components
- 3 Discretization
 - The FEM
 - A piecewise uniform ("Shishkin") mesh
- 4 Analysis (regular part only)
- 5 References

Primary references

The key reference for this presentation is [Clavero et al., 2005]. From that, the most important component is the solution decomposition, which itself was first established by [Shishkin, 1992]. The compatibility conditions provided by [Han and Kellogg, 1990] are also vital.

Extensions to coupled systems can be found in [Kellogg et al., 2008a] and [Kellogg et al., 2008b], and a unified treatment is given in [Linß, 2010, Chap. 9].

.....

The references above are mentioned only because they are related to the this presentation.

There are, of course, many other important papers on the solution of two-dimensional reaction-diffusion problems...

A 2D singularly perturbed problem

$$\label{eq:constraint} \begin{split} &-\epsilon^2(u_{xx}+u_{yy})+b(x,y)u=f(x,y), \text{ on } (0,1)^2\qquad u=g \text{ on the boundary.} \end{split}$$

- Typically, on this domain, solutions feature four "edge" layers that behave like $\exp(-x/\epsilon)$ or $\exp(-y/\epsilon)$.
- They also have four corner layers, that behave like $\exp(-(x+y)/\epsilon)$.

- We'll denote the corners of the domain c_1, \ldots, c_4 , labelled clockwise from $c_1 = (0, 0)$.
- The edges are $\Gamma_1, \ldots, \Gamma_4$, labelled clockwise from $\Gamma_1 = [0, 1]$.
- \blacksquare On the boundary, u(x,y)=g(x,y), and we'll denote the restriction of g to Γ_i as $g_i.$

Solution decomposition

From [Han and Kellogg, 1990], we shall assume that f, $b\in \mathcal{C}^{2,\alpha}(\bar{\Omega})$, the $g_i\in \mathcal{C}^{4,\alpha}([0,1])$ and that we have compatibility conditions at each corner. For example, at $c_1=(0,0)$, these are

$$g_1 = g_2, \tag{2a}$$

$$-\varepsilon^{2}\left(\frac{\partial^{2}}{\partial x^{2}}g_{1}+\frac{\partial^{2}}{\partial y^{2}}g_{2}\right)+bg_{1}=f,^{1}$$
(2b)

$$\frac{\partial^2}{\partial x^2} \big(- \epsilon^2 \frac{\partial^2}{\partial x^2} g_1 + bg_1 - f \big) = \frac{\partial^2}{\partial y^2} \big(- \epsilon^2 \frac{\partial^2}{\partial y^2} g_2 + bg_2 - f \big).$$
 (2c)

If u solves (1), and the conditions (2) are satisfied, as well as analogous ones at the other three corners, then $u \in C^{4,\alpha}$.

¹Actually, g_1 and g_2 are functions of a single variable, x and y respectively, but it is notationally convienent to express these ordinary derivatives as partial derivaties, particularly in (2c).

One can show that

$$\left\|\frac{\partial^{(k+j)}}{\partial x^k \partial y^j} u\right\| \leqslant C \varepsilon^{-(k+j)},\tag{3}$$

but finer results are needed.

One of the key ideas in proving the existence of a suitable solution decomposition for this problem is to use an extended domain: $\Omega^{\star} = (-\alpha, 1 + \alpha)^2.$ Define smooth extensions to b and f to $\bar{\Omega}^{\star}$, denoted b^{*} and f^{*} respectively. Similarly the extension of g_i to $[-\alpha, 1 + \alpha]$ is $g_i^{\star}.$

		(1 -	+ a, 1 + a
(0,1)		(1, 1)	
(-, ,			
	0		
	12		
(0,0)		(1.0)	
(0,0)		(1,0)	

 $(-\alpha, -\alpha)$

Solution decomposition

We will let $v^{\star} = v_0^{\star} + \varepsilon v_1^{\star}$, where

•
$$v_0^{\star} = f^{\star}/b^{\star}$$
.
• v_1^{\star} solves

$$\mathcal{L}^{\star}\nu_{1}^{\star}=\Delta\nu_{0}^{\star} \quad \text{ on } \Omega^{\star}, \qquad \nu_{1}^{\star}|_{\partial\Omega^{\star}}=0.$$

• Then v is taken as the solution to

$$\mathcal{L}\nu = f$$
 on Ω^* , $\nu = \nu^*$ on $\partial\Omega$.

It follows that

$$\|\frac{\partial^{(k+j)}}{\partial x^k \partial y^j} u\| \leqslant C(1 + \varepsilon^{-(k+j)}), \qquad \text{for } 0 \leqslant k+j \leqslant 4. \tag{4}$$

Next define a function w_1 which is associated with the edge along Γ_1 . That is, we would like to construct w_1 so that

$$|w_1(x,y)| \leq C e^{-\beta y/\epsilon}$$

and whatever conditions are needed on the remaining regions,

 $((-a, 0) \cup (1, 1 + a)) \times \{0\}$, to ensure that $w_1 \in C^{4, \alpha}(\bar{\Omega}^{\star\star})$. One can then show that

$$|w_1^\star(\mathbf{x},\mathbf{y})|\leqslant C\big(\frac{a+\mathbf{x}}{a}\big)\big(\frac{1+a-\mathbf{x}}{1+a}\big)e^{-\beta\,\mathbf{y}/\varepsilon}\quad \text{ for } (\mathbf{x},\mathbf{y})\in\bar\Omega^{\star\star}.$$

Solution decomposition

Next, define w_1 as the solution to

$\mathcal{L}w_1 = 0$	on Ω,
$w_1 = u - v$	on Γ_1
$w_1 = 0$	on Γ_3
$w_1 = w_1^\star$	on $\{0,1\} imes [0,1]$

Using the previous bound on w_1^{\star} we get

$$|w_1(x,y)| \leqslant C e^{-\beta y/\epsilon}$$
 for $(x,y) \in \overline{\Omega}$.

So this shows that $w_1(x, y)$ decays rapidly away from Γ_1 , the edge at y = 1. It is possible establish analogous bounds for lower derivatives of w (more about that after coffee...).

Moreover, analogous bounds are possible for:

$$\begin{split} |w_2(x,y)| &\leqslant C e^{-\beta x/\epsilon} \\ |w_3(x,y)| &\leqslant C e^{-\beta (1-y)/\epsilon} \\ |w_4(x,y)| &\leqslant C e^{-\beta (1-x)/\epsilon} \end{split}$$

Finally, define z_1 (the component associated with the corner $c_1 = (0, 0)$), as the solution to

$\mathcal{L}z_1 = 0$	on Ω ,
$z_1 = -w_2$	on Γ_1
$z_1 = -w_1$	on Γ_2
$z_1 = 0$	on $\Gamma_3 \cup \Gamma_4$

Since we have suitable compatibility conditions, $z_1 \in \mathbb{C}^{4, \alpha}$. A comparison principle then gives

 $|z_1(x,y)| \leq Ce^{-\beta(x+y)/\epsilon}.$

There are analogous functions, z_2 , z_3 and z_4 associated with the other corners.

The decomposition is

$$u = v + \sum_{i=1}^{4} w_i + \sum_{i=1}^{4} z_i.$$

Discretization

We re-use the finite difference method that we employed for one-dimensional problems, extended in the obvious way.

Let $\bar{\Omega}_x^N$ and $\bar{\Omega}_y^N$ be arbitrary meshes with N intervals on [0, 1]. Set $\bar{\Omega}^N = \{(x_i, y_j)\}_{i,j=0}^N$ to be the Cartesian product of $\bar{\Omega}_x^N$ and $\bar{\Omega}_y^N$. Set $h_i = x_i - x_{i-1}$ and $k_i = y_i - y_{i-1}$ for each i.

Define the standard second-order central difference operators

$$\delta_{x}^{2} v_{i,j} := \frac{1}{\overline{h}_{i}} \left(\frac{\nu_{i+1,j} - \nu_{i,j}}{h_{i+1}} - \frac{\nu_{i,j} - \nu_{i-1,j}}{h_{i}} \right)$$
$$\delta_{y}^{2} v_{i,j} := \frac{1}{\overline{k}_{i}} \left(\frac{\nu_{i,j+1} - \nu_{i,j}}{k_{i+1}} - \frac{\nu_{i,j} - \nu_{i,j-1}}{k_{i}} \right)$$

Define $\Delta^{N} v_{i,j} := (\delta_x^{N} + \delta_y^{N}) v_{i,j}.$

Then the difference operator is

$$(L^N U)_{\mathfrak{i}, \mathfrak{j}} = -\epsilon^2 \Delta^N U_{\mathfrak{i}, \mathfrak{j}} + \mathfrak{b}(x_{\mathfrak{i}}, y_{\mathfrak{j}}) U_{\mathfrak{i}, \mathfrak{j}}, \quad \mathfrak{i}, \mathfrak{j} = 1, \dots N - 1.$$

To generate a numerical approximation of the solution to (1) solve the system of $({\rm N}+1)^2$ linear equations

$$\begin{split} L^N U)_{i,j} &= \mathbf{f}(x_i,y_j) & \quad \text{for } (x_i,y_j) \in \Omega^N, \\ U_{i,j} &= g(x_i,y_i) & \quad \text{for } (x_i,y_j) \in \partial \Omega^N. \end{split}$$

Define $\tau_{\epsilon} = \min\left\{\frac{1}{4}, 2\frac{\epsilon}{\beta}\ln N\right\}$, and construct $\bar{\Omega}_x^N$ and $\bar{\Omega}_y^N$ to be Shishkin meshes as before.

For the method and mesh, we would like to prove that

 $\|\boldsymbol{\mathfrak{u}}-\boldsymbol{U}\|_{\Omega^N}\leqslant C(N^{-1}\ln N)^2.$

However, we shall show some restraint, and prove the easiest part of this: for the regular part.

But we will at least focus on how, without greatly complicating the analysis, we may show *almost second-order convergence*, compared to the first-order convergence we obtained for the scalar problem.

That is, assume there exists a decomposition of the discrete solution U:

$$U=V+\sum_{i=1}^4 W_i+\sum_{i=1}^4 Z_i.$$

We will just estimate $\|v - V\|_{\overline{\Omega}N}$. The idea used is originally from [Miller et al., 1998], though the version given here is exactly from [Clavero et al., 2005].

Analysis (regular part only)

We need only a bound for the truncation error. Standard arguments give

$$|\mathsf{L}^{\mathsf{N}}(\mathsf{U}-\mathfrak{u})(x_{i},y_{j})| \leqslant \begin{cases} \mathsf{C}\boldsymbol{\epsilon}^{2}\big(\bar{h}_{i}\|\frac{\partial^{3}}{\partial x^{3}}\mathfrak{u}\|+\bar{k}_{j}\|\frac{\partial^{3}}{\partial y^{3}}\mathfrak{u}\|\big) & x_{i},y_{j}\in\{\tau_{\boldsymbol{\epsilon}},1-\tau\}\\ \mathsf{C}\boldsymbol{\epsilon}^{2}\big(\bar{h}_{i}^{2}\|\frac{\partial^{4}}{\partial x^{4}}\mathfrak{u}\|+\bar{k}_{j}^{2}\|\frac{\partial^{4}}{\partial y^{4}}\mathfrak{u}\|\big) & \text{otherwise.} \end{cases}$$

From this

$$|L^N(V-\nu)(x_i,y_j)| \leqslant \begin{cases} C\epsilon N^{-1} & x_i,y_j \in \{\tau_\epsilon,1-\tau\} \\ CN^{-2}. \end{cases}$$

Define the barrier function

$$\Phi(\mathbf{x}_{i},\mathbf{y}_{j}) = C \frac{(\tau_{\epsilon})^{2}}{\epsilon^{2}} \mathsf{N}^{-2} \big(\Theta(\mathbf{x}_{i}) + \Theta(\mathbf{y}_{j}) \big) + C \mathsf{N}^{-2},$$

where Θ is the piecewise linear function interpolating the points

$$\left\{(0,0), (\tau_{\epsilon}, 1), (1-\tau_{\epsilon}, 1), (1,0)\right\}$$

Then, for example,

$$\delta_x^2 \Theta(x) = \begin{cases} -N/\tau_\epsilon & x \in \{\tau_\epsilon, 1-\tau_\epsilon\} \\ 0 & \text{otherwise.} \end{cases}$$

It follows directly that

$$0 \leqslant \Phi(x_i, y_i) \leqslant C N^{-2} \ln^2 N$$
,

and

$$|L^{N}\Phi(x_{i},y_{j})| \leqslant \begin{cases} C\tau_{\epsilon}N^{-1} + (b\Phi)(x_{i},y_{j}) & x_{i},y_{j} \in \{\tau_{\epsilon},1-\tau\}\\ (b\Phi)(x_{i},y_{j}) & \text{otherwise.} \end{cases}$$

Application of a maximum principle gives

$$\|\nu - V\|_{\bar{\Omega}^{N}} \leqslant C N^{-2} \ln^2 N.$$

The remaining analysis for $\|w_i - W_i\|_{\bar{\Omega}^N}$ and $\|z_i - Z_i\|_{\bar{\Omega}^N}$ is quite involved, and the details are not presented here.

However, in the next section of this short course, we'll look at the analysis of such terms when studying a *finite element method*.

References

Clavero, C., Gracia, J. L., and O'Riordan, E. (2005).

A parameter robust numerical method for a two dimensional reaction-diffusion problem.

```
Math. Comp., 74(252):1743-1758.
```


Han, H. and Kellogg, R. B. (1990).

Differentiability properties of solutions of the equation $-\varepsilon^2\Delta u+ru=f(x,y)$ in a square.

SIAM J. Math. Anal., 21(2):394-408.

Kellogg, R., Madden, N., and Stynes, M. (2008a).

A parameter-robust numerical method for a system of reaction-diffusion equations in two dimensions.

Numer. Methods Partial Differ. Equations, 24(1):312–334.

Kellogg, R. B., Linss, T., and Stynes, M. (2008b).

A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions.

Math. Comp., 77(264):2085-2096.

References

Linß, T. (2010).

Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin.

Miller, J. J. H., O'Riordan, E., Shishkin, G. I., and Shishkina, L. P. (1998). Fitted mesh methods for problems with parabolic boundary layers. *Math. Proc. R. Ir. Acad.*, 98A(2):173–190.

Shishkin, G. I. (1992).

Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations. Russian Academy of Sciences, Ural Section, Ekaterinburg.

In Russian.