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Outline

Monday, 25 July [ Tuesday, 26 July
09:00 Welcome/Coffee
09:15 1. Introduction to singularly perturbed 5. PDEs (i): time-dependent problems.
problems
10:00 Break
10:15 | 2. Numerical methods and uniform 6. PDEs (ii): elliptic problems
convergence; FDMs and their analysis. 7. Finite Element Methods
12:00 Lunch
14:00 | 3. Coupled systems [ 8. Convection-diffusion (Stynes)
15:00 Break
15:15 | 3. Coupled systems (continued) 9. Nonlinear problems (Kopteva)
16:15 | 4. Lab 1 | 10. Lab 2 (PDEs)
17:30 Finish
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§6. PDEs Part 2: Elliptic problems in two dimensions

45 minut
(45 minutes) A 2D, SP, reaction-diffusion

equation
Solution decomposition
In this section we will study the robust m The domain
solution, by a finite difference m Compatibility conditions
method, of PDEs of the form m Extended domain
m The regular component
—2Autbu="f on Q:=(0,1). u Edge components

m Corner components

The focus is on d = 2, but many of the Discretization

ideas for d = 3 are similar.

The FEM
(Come to my talk later in the week to " A e. . if “Shishkin”
learn about that case!) m A piecewise uniform (“Shishkin™)
ke mesh

Analysis (regular part only)
References
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Primary references

The key reference for this presentation is [Clavero et al., 2005]. From that, the
most important component is the solution decomposition, which itself was first
established by [Shishkin, 1992]. The compatibility conditions provided by

[Han and Kellogg, 1990] are also vital.

Extensions to coupled systems can be found in [Kellogg et al., 2008a] and
[Kellogg et al., 2008b], and a unified treatment is given in [LinB, 2010, Chap.

The references above are mentioned only because they are related to the this
presentation.

There are, of course, many other important papers on the solution of
two-dimensional reaction-diffusion problems...
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A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

— (W + Uyy) +b(x, y)u = f(x,y), on (0, 1)? u = g on the boundary.

(1)

m Typically, on this domain, solutions feature four “edge” layers that behave
like exp(—x/¢) or exp(—y/e).
m They also have four corner layers, that behave like exp(—(x +y)/¢).
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Solution decomposition

The domain

m We'll denote the corners of the domain ¢, .

C1 = (O, 0)
m The edges are

I, ..

.., Ca4, labelled clockwise from

., T4, labelled clockwise from I7 = [0, 1].
m On the boundary, u(x,y) = g(x,y), and we'll denote the restriction of g

to I} as g;.
cy I3 g
QBB QIB QBB
r2 QBI QII QBI r4
QBB QIB QBB
cy Fl Cy
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Solution decomposition Compatibility conditions

From [Han and Kellogg, 1990], we shall assume that f,b € €>%(Q), the
gi € €**([0, 1]) and that we have compatibility conditions at each corner. For
example, at ¢; = (0, 0), these are

91 = 92, (23)
) a2 a2
¢ (ﬁgl + @92) +bgy =11 (2b)
2? 22 0? (i
@(—Ezwgﬁrbgl—f):@(—52@292+b92—f)- (2c)

If u solves (1), and the conditions (2) are satisfied, as well as analogous ones at
the other three corners, then u € C*<.

IActually, g1 and g3 are functions of a single variable, x and y respctively, but it is notationally
convienent to express these ordinary derivatives as partial derivaties, particularly in (2c).
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Solution decomposition Extended domain

One can show that )
o (k+j)

I oxkoyl

but finer results are needed.

u|| < Ce*(kﬂ), (3)

(1+a,1+a)

One of the key ideas in proving the
existence of a suitable solution
decomposition for this problem is to
use an extended domain:

O* = (—a,1+a)?.

Define smooth extensions to b and f to
Q*, denoted b* and f* respectively.
Similarly the extension of g; to
[—a,1+a]is g7.

(—a,—a)
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Solution decomposition The regular component

We will let v* = v§ + ev], where
— *
m v =f*/b*.

m V] solves
L*vi =Avy on QF, Viloar = 0.

m Then v is taken as the solution to
Lv=~f onQ* v =v* on 0Q).

It follows that
o (k+j)
||WUH

< C(1 + e 4y, for 0 <k+j <4

(4)
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Solution decomposition Edge components

Next define a function w; which is associated with the edge along 7. That is,
we would like to construct w; so that

wi (x, y)| < Ce PV/e.

(1+ a,o)

Define a new extended domain,

Q" =(~a,1+a) x (0,1). o e
Let w* solve
LW, =0 on Q**,
wi=u—v only Q
wi(x,1) =0 for x € [—a, 1+ a],
wi(—a,y)=0 fory € [0,1],
wi(l+a,y)=0 fory € [0, 1], (0,0) (1.0)

(—a,0)
and whatever conditions are needed on the remaining regions,
((fa, Ou(1l,1+ a)) x {0}, to ensure that w; € C**(Q**). One can then show
that

+ 1+a— — € ) *K
wi(x, y)I < C(aa X)(#)e By/e for (x,y) € O**.
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Solution decomposition Edge components

Next, define w; as the solution to

Lw; =0 on Q,
w=u—v onTl;
w; =0 on T3
wy = wj on {0,1} x [0,1]

Using the previous bound on wj we get

wi(x, y)l < Ce™PY/¢  for (x,y) € Q.

So this shows that wy(x,y) decays rapidly away from T3, the edge at y = 1.

It is possible establish analogous bounds for lower derivatives of w (more about
that after coffee...).

Moreover, analogous bounds are possible for:
wa(x, y)l < Ce P/
fws(x, y)| < CeBO-w/e
wa(x, y)| < Ce PITX)/¢
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Solution decomposition Corner components

Finally, define z; (the component associated with the corner ¢; = (0, 0)), as the

solution to
Lz; =0 on Q,
Z1 = —W» on I
Z1 = —W; onl,
1 = 0 on ]"3 @] F4

Since we have suitable compatibility conditions, z; € €**. A comparison

principle then gives
|z1(x, y)| < Ce PIx+y)/e,

There are analogous functions, z, z3 and z, associated with the other corners.
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Solution decomposition Corner components

The decomposition is

+ -
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Discretization The FEM

We re-use the finite difference method that we employed for one-dimensional
problems, extended in the obvious way.

Let QQ‘ and QE be arbitrary meshes with N intervals on [0, 1].
Set ON = {(x1,Yj)1Yj—o to be the Cartesian product of QN and Q;‘.
Set hy =x; —x4—1 and k; =yi —y;_; for each i.

Define the standard second-order central difference operators

1 (vivy —Vij  Vij — Vi
B2vy; = — b) J Vi J

o —
hy hig hy
82y = 1 (vi,j+1 —Vij Vij _vi,j—l)
ij == —
v ki Kit1 ki

Define ANv;; = (8N + 53‘)\11,]-.
Then the difference operator is
(LNW)y; = —e?ANUy5 + b(xi, yj)Ui;, Lj=1,...N—1.
To generate a numerical approximation of the solution to (1) solve the system
of (N + 1)2 linear equations
(LMW 5 = £(xi,y5) for (xi,y;) € QN,

5
Ui = g(xi,yi) for (xi,y;) € IO ®)
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Discretization A piecewise uniform (“Shishkin”) mesh

1 - _
Define T, = min 1,2% InN}, and construct QF and QUN to be Shishkin

meshes as before.
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Discretization A piecewise uniform (“Shishkin”) mesh

For the method and mesh, we would like to prove that

lu—Ulon < C(N"LInN)2 J

However, we shall show some restraint, and prove the easiest part of this: for
the regular part.

But we will at least focus on how, without greatly complicating the analysis, we
may show almost second-order convergence, compared to the first-order
convergence we obtained for the scalar problem.

That is, assume there exists a decomposition of the discrete solution U:

4 4
U=V+) Wi+) Zi
i=1 i=1

We will just estimate |[v — V||g~. The idea used is originally from
[Miller et al., 1998], though the version given here is exactly from
[Clavero et al., 2005].
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Analysis (regular part only)

We need only a bound for the truncation error. Standard arguments give

- 3
Ce? (hy]| aX3uH + k|25 u||) xi,Yj € {1.,1— 1}
Ce2(R2)| Zul + k2|l ay4u||) otherwise.

ILN (U — w) (x¢, y5)l < {

From this
CeN™' xq,y; €{te,1—1}

ILN(V =) (x:,5)] < {CNZ.

Define the barrier function

(t)?

e2

O(xq,y;) =C N72(0(x) +O(y;)) + CN 2,

where O is the piecewise linear function interpolating the points

{0 .0 1.00]
Then, for example,

628(?() _ _N/Te Xe{Tsvl_Ts}
* 0 otherwise.
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Analysis (regular part only)

It follows directly that
0 < D(xi,y1) < CN72In?N,
and

Cte N1+ (b®)(xi,y;) xi,Yj €{Te, 1 — 7}

No Xi, Yj)| <
| (%1, Y5)] {(bqﬂ(xi,y]’) otherwise.

Application of a maximum principle gives

[v—V]an < CN72In?N,

The remaining analysis for ||[w; — W;||g~ and ||zi — Zi||g~ is quite involved,
and the details are not presented here.

However, in the next section of this short course, we'll look at the analysis of
such terms when studying a finite element method.
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