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Outline

Monday, 25 July [ Tuesday, 26 July
09:00 Welcome/Coffee
09:15 1. Introduction to singularly perturbed 5. PDEs (i): time-dependent problems.
problems
10:00 Break
10:15 | 2. Numerical methods and uniform 6. PDEs (ii): elliptic problems
convergence; FDMs and their analysis. 7. Finite Element Methods
12:00 Lunch
14:00 | 3. Coupled systems [ 8. Convection-diffusion (Stynes)
15:00 Break
15:15 | 3. Coupled systems (continued) 9. Nonlinear problems (Kopteva)
16:15 | 4. Lab 1 | 10. Lab 2 (PDEs)
17:30 Finish
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§7. Finite Element Methods

(60 minutes)

In this section we will study the
analysis of a finite element method,

of PDEs of the form A 2D, SP, reaction-diffusion
equation
—Au+tbu="~f on Q:=(0,1)%. = Notation

m Solution decomposition

We will use a standard Galerkin method The Shishkin mesh

on a tensor product space with bilinear Interpolation
elements, on a Shishkin mesh (again!). The Galerkin FEM
Analysing the method, we'll obtain an Numerical Example

error estimate that is parameter robust,
in the sense that dependence on ¢ is
entirely accounted for.

However, the estimate is not
independent of ¢, we will finish with a
discussion of appropriate norms for this
problem.

@ Other norms

m A simple 1D example

m Balanced norms and analyses
References
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Primary references

The main reference to this section is [Liu et al., 2009]. Although that article is
primarily about a sparse grid method, it also provides a sharp analysis of a
standard Galerkin FEM.

Again, we'll rely on the solution decomposition whose exposition was presented
in [Clavero et al., 2005].

If you would like to read some more about FEMs+SPPS, a good starting point
would be [LinB and Madden, 2004], which has a simple analysis of a system of
two coupled reaction-diffusion problems in one-dimension, on Shishkin and
Bakhvalov meshes.

As usual, the monograph [LinB, 2010] gives a more detailed analysis, including
sections on quadrature, etc. See also [Roos et al., 2008].

The more recent material, on balanced norms, is motivated by
[Lin and Stynes, 2012], and the discussion in [Adler et al., 2016].
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A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

—52(uxx+uw)+b(x,y)u:f(x,y), on Q :=(0,1)? upQ=0. (1)

As before, we expect the solution to exhibit 9 distinct regions: the interior, four
edge layer regions, and four corner layer regions.

AARMS-CRM Workshop on NA of SPDEs, July 2016: §7 Finite Element Methods 5/30



A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

—sz(uxx+uyy)+b(x,y)u:f(x,y), on Q :=(0,1)? upQ=0. (2

As usual, € € (0,1], but also b(x,y) > 2p2 > 0.

We assume that f, b € C**(Q) for some « € (0,1]. It follows that
u € Cox(Q). We also assume that f vanishes at each corner of Q) to ensure
that u € C3*(Q).
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A 2D, SP, reaction-diffusion equation Notation

The edges of 0Q) are

N={x00<x<1}, T:={0yl0<y<1}
Be={x10<x<1, NL={1yl<y<1}.
Label the corners of Q as ¢y, 2, ¢3, ¢4 where ¢y is (0,0) and the numbering is
clockwise.
c Iy Cs
[ Iy
C1 Iy 4
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A 2D, SP, reaction-diffusion equation Solution decomposition

Again, we make use of the Shishkin decomposition from [Clavero et al., 2005],
with minor variations.

Subject to the assumptions that b, f € C**(Q), and corner compatibility
conditions, the solution u can be decomposed as

4 4
u:V+W+Z:V+ZWi+ZZiy
i=1 i=1

where each wj is a layer associated with the edge I, and each z; is a layer
associated with the corner c;. There exists a constant C such that

——(x,y)| < € , <m+n<4,
6Xmay“( )< Cl4+e™M) o<m+n<4
0™ wy 2-my.—n ,—By/c

W(X,H) <C(1+8 )E e v O<m+n<3,
gm+n

Wa:j(x,y) < C(1+£2*")£*me*ﬁ‘"/8 o<m+n<<3,
! —men —B(xty)/e

W(X,y) <C€ e 0<m+n§3,

with analogous bounds for w3, wy, 25, z3 and z4.
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The Shishkin mesh

We use the same Shishkin mesh as for the Finite Difference method. Define

T = min{%, 2£f5*1|nN}.

11—,

Te

T, 11—,
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The Shishkin mesh

We will consider the case where ¢ is so small that
T. =2 1InN.

Partition Q as follows: Q = Q; U Qg U Qi U Qgg, where

) I3 3
Qg5 Qrp Qpp
Qu =[te, 1 —7] x[te, 1 —7.],
QBI - ([ong]U [1_T511]) X [Tix]-_T{]u
Qg =1, 1—7.] x ([0,T.]U1l—"7,,1]),
e = bl ol 2 P (S35 Qpp Qg T,
QBB = [[Osz] X ([OvTi} ) [17’(&11”)
U([lfrrsxl} X ([OxTE]U[]-*TEvl]))-
Qg Qg Qpp
cq Iy Cy
10/30
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The Shishkin mesh

In the case of interest, ¢ < N1, cy Ty cs
and so T =2¢B 1 InN. Thus, for o o o
BB 1B BB
any point (x,y) € Qy,
efﬁx/s < efﬁ'c/s _ N72,
e Bu/e Lo BT/ — N2
r? QBI QII QBI I—‘4
—B(x+y)/e < EN2
||€ HO,Q/QBB =X E '
—B(x+y)/e _ ¢
e = —.
H HOQBB 2[3 QBB QIB QBB
cq [ Cy
By/e |2 _la—Bx/e2 € -4
e ™Y 118.0,uas, = 167" 6.0 ua,s < 2BN .

— ”e—fix/s 2

e By/EHg,QBBuQIB HO,QBBUQBI < 26
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Interpolation

Given a one-dimensional mesh, QN let VN be the associated space of
piecewise linear functions.

Let IN : C[0, 1] — VN[0, 1] be the usual piecewise linear Lagrange interpolation
operator associated with VN,

Let p € [2,00] and ¢ € W?P[0, 1]. Then the piecewise linear interpolant Iy ¢
of ¢ satisfies the bounds

Hd)_INd)”O,p,[xi,l,x-l] +h'H _INcb /HOP [xi—1.x¢] <
C min {h ||¢ ||0P xi—1.%q h2“¢'//||op Bxi—1.xq ]}

From standard inverse inequalities in one dimension one sees easily that

< wllox Vb e VR*Nu(Q), VK e TNNy(Q),
(3)

hy

ox

b

Y llox

where the rectangle K has size h, x k.
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Interpolation

The Shishkin mesh is highly anisotropic on Qg U Qg1, and to obtain
satisfactory interpolation error estimates on this region one uses the sharp
anisotropic interpolation analysis of [Apel, 1999, Apel and Dobrowolski, 1992]:

Lemma

Let T be any mesh rectangle of size h, x ky. Let ¢ € H?(t). Then its
piecewise bilinear nodal interpolant &' satisfies the bounds
[ — &' llo.c < C (Wl dxxlloc + haky lbxyllox + K I dyyllo) .
H(d) - ¢)I)XHO,T < C (hX”(bXXHO,T + k'y ”d)xg HO,T) ’
H(d) - d)I)y HO,T < C (hx”d)xy HO,T + ky Hd)yy HO,T) o
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Interpolation

Equipped with these results, we would like to prove that

There exists a constant C such that

Hule,Nu”O,Q < CNiz. (43)

and
| V(u—Innwloo < C(N2 4+ 2N"1InN). (4b)

Here we will give an account of how the bound for the (4b) term is obtained.

From the solution decomposition,

v ((I—IN,N) <v+iwk+izk)>

k=1 k=1

EHV(U — IN,Nu)”O,Q =&

0,Q
Each term in this decomposition is bounded separately.

First, standard arguments give,

< C€N71|V‘2,Q < CN72.
0,Q

€ (v—TInnv)

ox
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Interpolation

Recall that w; is the term associated with I, and, so wi(x,y) ~ e YB/¢. That
fact, and the anisotropic interpolation results, give

0 02
== (w1 — Inonwi) < CeN™ (H W1
ox 0,.Q11UQgRy 0,011UQgT
5 -
+
Oxdy 00Q11UQgB

< CeN! (1 + max s’le’ﬁy/5>

(xy)eQ1UQg

< CN72,
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Interpolation

On Qg U Qgsg,
0 a2
€ a*(W1—IN,NW1) <C£{N71 a“;l
x 0.Q1pUQgpE X% lo.ipupp
aZ
+5N’1(InN)’ bt ]
axay 0Q1UQEE
< CN72

Thus ¢ || (w; — IN,Nwl)HQQ < CN—2,
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Interpolation

Next recall that w, is the component associated with the edge layer near I5.
So, roughly, wo(x,y) ~ e *B/¢,
Similar to above, we can show that ¢|/(w2 — InnW2)x 0.0, 00,5 < N72.

However, the most significant term is

€ a*[Wz—IN,Nwz) <
x 00p1UQpE
0? 0?
Ce [eN"Y(InN) || S22 LN 2
ox 0,0 1UQEE 0xdy 0,05 1UQRE
< Ce2N"tInN.
Consequently,
€| =—(wy — Innwn) < C(N24 2Nt InN).
ox 0.0
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Interpolation

Analogous results are valid for ws, w, and the corner layer terms, z;, z,, z3, z4.
Gathering these results yields ¢ || 2 (u— Innu) ||, o < C(NT2 42N InN).
The same estimate is valid for e[| 35, (1 — In.nw o0

It is then clear that

There exists a constant C such that

[lu—Innuloo + €|V —Innw oo < CINT2+e/2N"1In N).
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The Galerkin FEM

The variational formulation of (2) is: find u € H}(Q) such that

B(u,v) i= £3(Vu, Vv) + (bu,v) = (f,v) Vv e Hj(Q).

Define an associated energy norm

1/2
IVl = {e®IVVl5a + VGt "

This bilinear form is coercive with respect to this norm:

2 2

v
dy

2

+b|[v|2 5 = min{1,2p%} |v|? Vv e H Q).
ox a '

0,0 0,
Furthermore it is continuous

By, W)l < (2+ [[blloo)Vclwle  Vv,w e Hy(Q).
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The Galerkin FEM

Define the Galerkin finite element approximation un,n € VO™ (Q)
B(unn, van) = (fvnn)  Yonn € VRN (Q).

Classical finite element arguments based on coercivity and Galerkin
orthogonality yields the quasioptimal bound

he—unnlle <C  inf o fu— . < Ju—Innul..
evii N ()

It then follows that...

There exists a constant C such that

lu—unnlle < CINT2+ 2N InN).
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Numerical Example

—e?Au+ (1+x*y?e¥?)u=Ff on Q:=(0,1)

where f and the boundary conditions are chosen so that

u = x3(1 +y?) + sin(mx?) + cos(my/2)

+ (x +y)(e7/c 4 e720)/e  gTIu/e g e30T)/Ey

v

€2 N =24 N =26 N=28 | N=210
1 3.395e-1 | 8.714e-2 | 2.190e-2 | 5.482e-3
102 4.618e-1 | 1.572e-1 | 4.214e-2 | 1.070e-2
104 2.287e-1 | 1.578e-1 | 7.228e-2 | 2.510e-2
10~ 7.220e-2 | 4.979e-2 | 2.280e-2 | 7.921e-3
1078 2.36le-2 | 1.574e-2 | 7.211e-3 | 2.504e-3
10710 || 9.621e-3 | 4.992e-3 | 2.280e-3 | 7.919e-4
10712 || 6.787e-3 | 1.619e-3 | 7.214e-4 | 2.504e-4
10714 || 6.435e-3 | 6.265e-4 | 2.292e-4 | 7.920e-5
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Other norms

The above results are somewhat suspect looking... although the method does
resolve layers, the error, in both theory and practice, shows an e-dependency.

However, it is observed that (subject to sufficient regularlity),
H'LL — uN,N Hoo,(_)N < CNiQ.

So, in some sense, the difficulty is with the norm, rather than the method.
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Other norms A simple 1D example

e=1{1,10"1,10"2,10"3%}

Consider this very simple 1 —
one-dimensional singularly = = = epsilon=10""
perturbed reaction-diffusion 08 —epsilon=10‘§f
pr0b|em' = epsilon=10""
0.6 4
—e2u”(x) +u(x) =0 on (0,1),
1/ 0.4 ,
u(0) =1,u(l)=e (=~ 0).

Its solution is w(x) = e */¢. 02 |
OO 0.2 0.4 0.6 0.8 1

1
oo == max [u(x)l =1, but |ulo:= J (u(x))2dx ~ V.
X 0

As ¢ — 0, we get that [[ufo — 0, even though |ul/, — 1.

Trivially, this shows that u™ = 0 is a terrible approximation to 1L with respect
to || - ||eo, but rather good with respect to || - ||o.
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Other norms A simple 1D example

Slightly less trivially, try solving this problem with a standard Galerkin FEM.
The weak form is:

1 1
B(u,v) = L 2’ (x)v' (%) + u(x)v(x), (f,v):= L f(x)v(x),

and find u € H}(0, 1).

B(u,v) = (f,v) forall v H}(0,1).

1/2
lgll. = (e2ug/u3+ Hgné) |

But this norm is weak, since

The energy norm is

1/2
(e2||u'uo n Hullo> ~ VE.

1/2
(enu'nz n \|uu2) ~1

In contrast,
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Other norms

Suppose we did try to solve our simple

A simple 1D example

ODE with a Galerkin FEM with linear
elements on a uniform mesh... Clearly,
even though this is a “good” estimate
at mesh points, it is clear that

[lu—unllcoa ~ O(1).

0 0.2 ©
It is known ([Bagaev and Shaidurov, 1998], [Farrell et al., 2000]) that

0.8

0.6

0.4

0.2

FoY

Approximation with ¢ = 1072

— U(X)
=-©-u"(x)

0

0
'
[y
)
[
[
[
[y
[
[
)
[
[y
[
1
)
'
[y
)
[
[
1

©

0.4 © O.GJs 0.83 z
e — M|l < CN2, J
So we now have two problems with the energy norm:
m it appears to show robust convergence even when layers are not being
resolved.
m On the layer-resolving Shishkin mesh, the O(e'/2N~1InN) quantity
demonstrates that this norm is not “balanced”.

AARMS-CRM Workshop on NA of SPDEs, July 2016: §7 Finite Element Methods

25/30



Other norms Balanced norms and analyses

There are several approaches to resolving the problem of the weakness of the
usual energy norm for this problem:

(a) Analyse a standard FEM (on a suitable mesh), but with respect to a
stronger norm, such as

1/2
[Vllba :== (el VVII§ + IVIE) ™"

This is done in [Roos and Schopf, 2014], and also
[Melenk and Xenophontos, 2015].
(b) Design a new FEM for which the natural induced norm is balanced. E.g.,
m In [Lin and Stynes, 2012], this is done using a first-order system approach.

m In FOSLS-type setting, see [Adler et al., 2016]

m In [Roos and Schopf, 2014], a C° interior penalty (CIP) method is
constructed.
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