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Outline

Monday, 25 July Tuesday, 26 July
09:00 Welcome/Coffee
09:15 1. Introduction to singularly perturbed

problems
5. PDEs (i): time-dependent problems.

10:00 Break
10:15 2. Numerical methods and uniform

convergence; FDMs and their analysis.
6. PDEs (ii): elliptic problems
7. Finite Element Methods

12:00 Lunch
14:00 3. Coupled systems 8. Convection-diffusion (Stynes)
15:00 Break
15:15 3. Coupled systems (continued) 9. Nonlinear problems (Kopteva)
16:15 4. Lab 1 10. Lab 2 (PDEs)
17:30 Finish
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§7. Finite Element Methods

(60 minutes)

In this section we will study the
analysis of a finite element method,
of PDEs of the form

−ε2∆u+ bu = f on Ω := (0, 1)d.

We will use a standard Galerkin method
on a tensor product space with bilinear
elements, on a Shishkin mesh (again!).
Analysing the method, we’ll obtain an
error estimate that is parameter robust,
in the sense that dependence on ε is
entirely accounted for.
However, the estimate is not
independent of ε, we will finish with a
discussion of appropriate norms for this
problem.

1 A 2D, SP, reaction-diffusion
equation

Notation
Solution decomposition

2 The Shishkin mesh
3 Interpolation
4 The Galerkin FEM
5 Numerical Example
6 Other norms

A simple 1D example
Balanced norms and analyses

7 References
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Primary references

The main reference to this section is [Liu et al., 2009]. Although that article is
primarily about a sparse grid method, it also provides a sharp analysis of a
standard Galerkin FEM.

Again, we’ll rely on the solution decomposition whose exposition was presented
in [Clavero et al., 2005].

If you would like to read some more about FEMs+SPPS, a good starting point
would be [Linß and Madden, 2004], which has a simple analysis of a system of
two coupled reaction-diffusion problems in one-dimension, on Shishkin and
Bakhvalov meshes.

As usual, the monograph [Linß, 2010] gives a more detailed analysis, including
sections on quadrature, etc. See also [Roos et al., 2008].

The more recent material, on balanced norms, is motivated by
[Lin and Stynes, 2012], and the discussion in [Adler et al., 2016].
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A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

− ε2(uxx + uyy) + b(x,y)u = f(x,y), on Ω := (0, 1)2 u|∂Ω = 0. (1)

As before, we expect the solution to exhibit 9 distinct regions: the interior, four
edge layer regions, and four corner layer regions.
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A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

− ε2(uxx + uyy) + b(x,y)u = f(x,y), on Ω := (0, 1)2 u|∂Ω = 0. (2)

As usual, ε ∈ (0, 1], but also b(x,y) > 2β2 > 0.

We assume that f, b ∈ C4,α(Ω̄) for some α ∈ (0, 1]. It follows that
u ∈ C6,α(Ω). We also assume that f vanishes at each corner of Ω̄ to ensure
that u ∈ C3,α(Ω̄).
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A 2D, SP, reaction-diffusion equation Notation

The edges of ∂Ω are

Γ1 := {(x, 0)|0 6 x 6 1}, Γ2 := {(0,y)|0 6 y 6 1},

Γ3 := {(x, 1)|0 6 x 6 1}, Γ4 := {(1,y)|0 6 y 6 1}.

Label the corners of Ω̄ as c1, c2, c3, c4 where c1 is (0, 0) and the numbering is
clockwise.

Γ3

Γ1

Γ4Γ2

c1

c2 c3

c4
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A 2D, SP, reaction-diffusion equation Solution decomposition

Again, we make use of the Shishkin decomposition from [Clavero et al., 2005],
with minor variations.

Subject to the assumptions that b, f ∈ C4,α(Ω̄), and corner compatibility
conditions, the solution u can be decomposed as

u = v+w+ z = v+

4∑
i=1

wi +

4∑
i=1

zi,

where each wi is a layer associated with the edge Γi, and each zi is a layer
associated with the corner ci. There exists a constant C such that∣∣∣∣ ∂m+nv

∂xm∂yn
(x,y)

∣∣∣∣ 6 C(1 + ε2−m−n), 0 6 m+ n 6 4,∣∣∣∣∂m+nw1

∂xm∂yn
(x,y)

∣∣∣∣ 6 C(1 + ε2−m)ε−ne−βy/ε 0 6 m+ n 6 3,∣∣∣∣∂m+nw2

∂xm∂yn
(x,y)

∣∣∣∣ 6 C(1 + ε2−n)ε−me−βx/ε 0 6 m+ n 6 3,∣∣∣∣ ∂m+nz1

∂xm∂yn
(x,y)

∣∣∣∣ 6 Cε−m−ne−β(x+y)/ε 0 6 m+ n 6 3,

with analogous bounds for w3, w4, z2, z3 and z4.
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The Shishkin mesh

We use the same Shishkin mesh as for the Finite Difference method. Define

τε = min

{
1

4
, 2εβ−1 lnN

}
.

τε 1 − τε

τε

1 − τε
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The Shishkin mesh

We will consider the case where ε is so small that

τε = 2εβ−1 lnN.

Partition Ω as follows: Ω̄ = ΩII ∪ΩBI ∪ΩIB ∪ΩBB, where

ΩII = [τε, 1 − τε]× [τε, 1 − τε],

ΩBI = ([0, τε] ∪ [1 − τε, 1])× [τε, 1 − τε],

ΩIB = [τε, 1 − τε]× ([0, τε] ∪ [1 − τε, 1]),

ΩBB = ([0, τε]× ([0, τε] ∪ [1 − τε, 1]))

∪ ([1 − τε, 1]× ([0, τε] ∪ [1 − τε, 1])).

c4

ΩIB ΩBB

ΩBBΩBB

ΩBB

ΩIB

Γ1c1

c3

ΩII ΩBI Γ4Γ2 ΩBI

Γ3c2
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The Shishkin mesh

In the case of interest, ε 6 N−1,

and so τ = 2εβ−1 lnN. Thus, for

any point (x,y) ∈ ΩII,

e−βx/ε 6 e−βτ/ε = N−2,

e−βy/ε 6 e−βτ/ε = N−2.

‖e−β(x+y)/ε‖0,Ω/ΩBB
6
ε

β
N−2;

‖e−β(x+y)/ε‖0,ΩBB
=

ε

2β
.

c4

ΩIB ΩBB

ΩBBΩBB

ΩBB

ΩIB

Γ1c1

c3

ΩII ΩBI Γ4Γ2 ΩBI

Γ3c2

‖e−βy/ε‖2
0,ΩII∪ΩBI

= ‖e−βx/ε‖2
0,ΩII∪ΩIB

6
ε

2β
N−4.

‖e−βy/ε‖2
0,ΩBB∪ΩIB

= ‖e−βx/ε‖2
0,ΩBB∪ΩBI

6
ε

2β
.
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Interpolation

Given a one-dimensional mesh, ΩNx , let VN be the associated space of
piecewise linear functions.

Let IN : C[0, 1]→ VN[0, 1] be the usual piecewise linear Lagrange interpolation
operator associated with VN.

Let p ∈ [2,∞] and φ ∈W2,p[0, 1]. Then the piecewise linear interpolant INφ
of φ satisfies the bounds

‖φ− INφ‖0,p,[xi−1,xi] + hi‖(φ− INφ)
′‖0,p,[xi−1,xi] 6

Cmin
{
hi‖φ ′‖0,p,[xi−1,xi], h

2
i‖φ ′′‖0,p,[xi−1,xi]

}
.

From standard inverse inequalities in one dimension one sees easily that

hx

∥∥∥∥∂ψ∂x
∥∥∥∥

0,K

+ ky

∥∥∥∥∂ψ∂y
∥∥∥∥

0,K

6 ‖ψ‖0,K ∀ψ ∈ VNx,Ny(Ω), ∀K ∈ TNx,Ny(Ω),

(3)
where the rectangle K has size hx × ky.
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Interpolation

The Shishkin mesh is highly anisotropic on ΩIB ∪ΩBI, and to obtain
satisfactory interpolation error estimates on this region one uses the sharp
anisotropic interpolation analysis of [Apel, 1999, Apel and Dobrowolski, 1992]:

Lemma

Let τ be any mesh rectangle of size hx × ky. Let φ ∈ H2(τ). Then its
piecewise bilinear nodal interpolant φI satisfies the bounds

‖φ− φI‖0,τ 6 C
(
h2
x‖φxx‖0,τ + hxky‖φxy‖0,τ + k

2
y‖φyy‖0,τ

)
,

‖(φ− φI)x‖0,τ 6 C (hx‖φxx‖0,τ + ky‖φxy‖0,τ) ,

‖(φ− φI)y‖0,τ 6 C (hx‖φxy‖0,τ + ky‖φyy‖0,τ) .
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Interpolation

Equipped with these results, we would like to prove that

Lemma

There exists a constant C such that

‖u− IN,Nu‖0,Ω 6 CN−2. (4a)

and
ε‖∇(u− IN,Nu)‖0,Ω 6 C(N−2 + ε1/2N−1 lnN). (4b)

Here we will give an account of how the bound for the (4b) term is obtained.

From the solution decomposition,

ε‖∇(u− IN,Nu)‖0,Ω = ε

∥∥∥∥∥∇
(
(I− IN,N)

(
v+

4∑
k=1

wk +

4∑
k=1

zk

))∥∥∥∥∥
0,Ω

.

Each term in this decomposition is bounded separately.

First, standard arguments give,

ε

∥∥∥∥ ∂∂x (v− IN,Nv)

∥∥∥∥
0,Ω

6 CεN−1|v|2,Ω 6 CN−2.
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Interpolation

Recall that w1 is the term associated with Γ1, and, so w1(x,y) ∼ e−yβ/ε. That
fact, and the anisotropic interpolation results, give

ε

∥∥∥∥ ∂∂x (w1 − IN,Nw1)

∥∥∥∥
0,ΩII∪ΩBI

6 CεN−1

(∥∥∥∥∂2w1

∂x2

∥∥∥∥
0,ΩII∪ΩBI

+

∥∥∥∥∂2w1

∂x∂y

∥∥∥∥
0,ΩII∪ΩBI

)
6 CεN−1

(
1 + max

(x,y)∈ΩII∪ΩBI

ε−1e−βy/ε
)

6 CN−2.
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Interpolation

On ΩIB ∪ΩBB,

ε

∥∥∥∥ ∂∂x (w1 − IN,Nw1)

∥∥∥∥
0,ΩIB∪ΩBB

6 Cε

[
N−1

∥∥∥∥∂2w1

∂x2

∥∥∥∥
0,ΩIB∪ΩBB

+ εN−1(lnN)

∥∥∥∥∂2w1

∂x∂y

∥∥∥∥
0,ΩIB∪ΩBB

]
6 CN−2.

Thus ε
∥∥ ∂
∂x

(w1 − IN,Nw1)
∥∥

0,Ω
6 CN−2.
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Interpolation

Next recall that w2 is the component associated with the edge layer near Γ2.
So, roughly, w2(x,y) ∼ e−xβ/ε.

Similar to above, we can show that ε‖(w2 − IN,Nw2)x‖0,ΩII∪ΩIB
6 N−2.

However, the most significant term is

ε

∥∥∥∥ ∂∂x (w2 − IN,Nw2)

∥∥∥∥
0,ΩBI∪ΩBB

6

Cε

[
εN−1(lnN)

∥∥∥∥∂2w2

∂x2

∥∥∥∥
0,ΩBI∪ΩBB

+N−1

∥∥∥∥∂2w2

∂x∂y

∥∥∥∥
0,ΩBI∪ΩBB

]
6 Cε1/2N−1 lnN.

Consequently,

ε

∥∥∥∥ ∂∂x (w2 − IN,Nw2)

∥∥∥∥
0,Ω

6 C(N−2 + ε1/2N−1 lnN).
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Interpolation

Analogous results are valid for w3,w4 and the corner layer terms, z1, z2, z3, z4.

Gathering these results yields ε
∥∥ ∂
∂x

(u− IN,Nu)
∥∥

0,Ω
6 C(N−2 + ε1/2N−1 lnN).

The same estimate is valid for ε‖ ∂
∂y

(u− IN,Nu)‖0,Ω.

It is then clear that

Theorem

There exists a constant C such that

‖u− IN,Nu‖0,Ω + ε‖∇(u− IN,Nu)‖0,Ω 6 C(N−2 + ε1/2N−1 lnN).
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The Galerkin FEM

The variational formulation of (2) is: find u ∈ H1
0(Ω) such that

B(u, v) := ε2(∇u,∇v) + (bu, v) = (f, v) ∀v ∈ H1
0(Ω).

Define an associated energy norm

‖v‖ε :=
{
ε2‖∇v‖2

0,Ω + ‖v‖2
0,Ω

}1/2
.

This bilinear form is coercive with respect to this norm:

B(v, v) = ε2

∥∥∥∥∂v∂x
∥∥∥∥2

0,Ω

+ε2

∥∥∥∥ ∂v∂y
∥∥∥∥2

0,Ω

+b‖v‖2
0,Ω > min{1, 2β2} ‖v‖2

ε ∀ v ∈ H1
0(Ω).

Furthermore it is continuous

|B(v,w)| 6 (2 + ‖b‖0,∞,Ω)‖v‖ε‖w‖ε ∀ v,w ∈ H1
0(Ω).
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The Galerkin FEM

Define the Galerkin finite element approximation uN,N ∈ VN,N
0 (Ω)

B(uN,N, vN,N) = (f, vN,N) ∀vN,N ∈ VN,N
0 (Ω).

Classical finite element arguments based on coercivity and Galerkin
orthogonality yields the quasioptimal bound

‖u− uN,N‖ε 6 C inf
φ∈VN,N

0 (Ω)

‖u− φ‖ε 6 ‖u− IN,Nu‖ε.

It then follows that...

Theorem

There exists a constant C such that

‖u− uN,N‖ε 6 C(N−2 + ε1/2N−1 lnN).
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Numerical Example

Example

−ε2∆u+
(
1 + x2y2exy/2

)
u = f on Ω := (0, 1)2,

where f and the boundary conditions are chosen so that

u = x3(1 + y2) + sin(πx2) + cos(πy/2)

+ (x+ y)
(
e−2x/ε + e−2(1−x)/ε + e−3y/ε + e−3(1−y)/ε

)
.

ε2 N = 24 N = 26 N = 28 N = 210

1 3.395e-1 8.714e-2 2.190e-2 5.482e-3
10−2 4.618e-1 1.572e-1 4.214e-2 1.070e-2
10−4 2.287e-1 1.578e-1 7.228e-2 2.510e-2
10−6 7.220e-2 4.979e-2 2.280e-2 7.921e-3
10−8 2.361e-2 1.574e-2 7.211e-3 2.504e-3
10−10 9.621e-3 4.992e-3 2.280e-3 7.919e-4
10−12 6.787e-3 1.619e-3 7.214e-4 2.504e-4
10−14 6.435e-3 6.265e-4 2.292e-4 7.920e-5
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Other norms

The above results are somewhat suspect looking... although the method does
resolve layers, the error, in both theory and practice, shows an ε-dependency.

However, it is observed that (subject to sufficient regularlity),

‖u− uN,N‖∞,Ω̄N 6 CN−2.

So, in some sense, the difficulty is with the norm, rather than the method.
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Other norms A simple 1D example

Consider this very simple
one-dimensional singularly
perturbed reaction-diffusion
problem:

−ε2u ′′(x) + u(x) = 0 on (0, 1),

u(0) = 1,u(1) = e−1/ε(≈ 0).

Its solution is u(x) = e−x/ε.

ε = {1, 10−1, 10−2, 10−3}

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

epsilon=1

epsilon=10
−1

epsilon=10
−2

epsilon=10
−3

‖u‖∞ := max
06x

|u(x)| = 1, but ‖u‖0 :=

√∫ 1

0

(
u(x))2dx ≈

√
ε.

As ε→ 0, we get that ‖u‖0 → 0, even though ‖u‖∞ → 1.

Trivially, this shows that uh ≡ 0 is a terrible approximation to u with respect
to ‖ · ‖∞, but rather good with respect to ‖ · ‖0.
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Other norms A simple 1D example

Slightly less trivially, try solving this problem with a standard Galerkin FEM.
The weak form is:

B(u, v) :=

∫ 1

0

ε2u ′(x)v ′(x) + u(x)v(x), (f, v) :=

∫ 1

0

f(x)v(x),

and find u ∈ H1
0(0, 1).

B(u, v) = (f, v) for all v ∈ H1
0(0, 1).

The energy norm is

‖g‖ε :=
(
ε2‖g ′‖2

0 + ‖g‖2
0

)1/2

.

But this norm is weak, since(
ε2‖u ′‖0 + ‖u‖0

)1/2

≈
√
ε.

In contrast, (
ε‖u ′‖2 + ‖u‖2

)1/2

≈ 1.
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Other norms A simple 1D example

Suppose we did try to solve our simple
ODE with a Galerkin FEM with linear
elements on a uniform mesh... Clearly,
even though this is a “good” estimate
at mesh points, it is clear that

‖u− uN‖∞,Ω ∼ O(1).

Approximation with ε = 10−2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

u(x)

u
h
(x)

It is known ([Bagaev and Shăıdurov, 1998], [Farrell et al., 2000]) that

‖u− uN‖ε 6 CN−1/2.

So we now have two problems with the energy norm:

it appears to show robust convergence even when layers are not being
resolved.

On the layer-resolving Shishkin mesh, the O(ε1/2N−1 lnN) quantity
demonstrates that this norm is not “balanced”.
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Other norms Balanced norms and analyses

There are several approaches to resolving the problem of the weakness of the
usual energy norm for this problem:

(a) Analyse a standard FEM (on a suitable mesh), but with respect to a
stronger norm, such as

‖v‖bal :=
(
ε‖∇v‖2

0 + ‖v‖2
0

)1/2
.

This is done in [Roos and Schopf, 2014], and also
[Melenk and Xenophontos, 2015].

(b) Design a new FEM for which the natural induced norm is balanced. E.g.,
In [Lin and Stynes, 2012], this is done using a first-order system approach.
In FOSLS-type setting, see [Adler et al., 2016]
In [Roos and Schopf, 2014], a C0 interior penalty (CIP) method is
constructed.
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