
Theory and Computation of SPDEs 1

GIAN Workshop on Theory and Computation of SPDEs, December 2017

MATLAB basics: for students new to MATLAB
Niall Madden (Niall.Madden@NUIGalway.ie)

(If you are familiar with MATLAB, you can skip this)

MATLAB is the standard tool for numerical computing

in industry and research. It specialises in matrix com-

putations (Matrix Laboratory), but includes functions for

graphics, numerical integration and differentiation, solving

differential equations, image and signal analysis,

GNU Octave is a free, open source, implementation of

MATLAB. Its GUI, IDE and graphics capabilities are not

quite as well-developed as MATLAB’s, but all of the ex-

amples given in this session will work in Octave.

MATLAB is an interpretive environment – you type a com-

mand and it will execute it immediately. Nonetheless, one

can group a set of commands together into a script or

function file.

The details given below cover just enough of the funda-

mentals to get started. For further reading I suggest the

following books. In particular, the first is freely available.

• Cleve B. Moler, Numerical Computing with MAT-

LAB (SIAM, 2004). Written by the creator of MAT-

LAB, it mixes MATLAB programming with theory

and algorithms of numerical methods. Also freely

available from the MathWorks site.

• Tobin A. Driscoll, Learning MATLAB (SIAM, 2009).

An excellent primer if you are just starting to learn

MATLAB.

• Desmond Higham and Nicholas Higham, MATLAB

Guide, is detailed and well-written. If you know a

little MATLAB, this is a great book to help you de-

velop your skills and deepen you knowledge.

1 The Basics

1.1. In MATLAB, everything is a matrix. A scalar variable

is just a 1 × 1 matrix. To check this set, say, t = 10,

and use the size() command to find the numbers of

rows and columns of t.

1.2. To declare a row-vector array, try:

>> x=[-4, -3, -2, -1, 0, 1, 2, 3, 4]

Or, more simply,

>> x=-4:4

To access, say, the 3rd entry

>> x(3)

1.3. We usually like to think of vectors as column vectors.

To define one, try

>> x=[1;2;3]

Or you can take the (Hermitian) transpose of a row

vector: >> x = [1,2,3]’;

Verify that is the Hermitian transpose by defining a

complex-valued vector, and looking at its transpose:

>> i = sqrt(-1); x=[i, 1+i, 2]

>> x’

1.4. If you put a semicolon at the end of a line of MAT-

LAB, the line is executed, but the output is not shown.

(This is useful if you are dealing with large vectors).

If no semicolon is used, the output is shown in the

command window.

1.5. We’ll often want to run a collection of commands re-

peatedly. So, rather than type them individually, cre-

ate a file containing the following code

x=-4:4

for i=1:9

y(i) = cos(x(i));

end

plot(x,y);

Save this as, say class1.m. To execute it, just type

>> class1 in the MATLAB command window.

Your file is an example of a MATLAB script file.

1.6. If the picture isn’t particularly impressive, then this

might be because MATLAB is actually only printing

the 9 points that you defined. To make this more

clear, use

plot(x, y, ’-o’)

This means to plot the vector y as a function of the

vector x, placing a circle at each point, and joining

adjacent points with a straight line.

1.7. The plot generated is not particularly good. The

points plotted are a unit apart. To get a better pic-

ture, try “easy plot” >> ezplot(@cos,[-4,4])

1.8. A row vector may be declared as follows:

>> x = a:h:b;

This sets x1 = a, x2 = a+h, x3 = x+ 2h, ..., xn = b.

If h is omitted, it is assumed to be 1.

1.9. The script file from Part 5 is a little redundant. In

MATLAB, most functions can take a vector or matrix

as an argument. So, in fact, we can just use

>> y = cos(x)

which sets y to be a vector such that yi = cos(xi).

1.10. The * operator performs matrix-matrix multiplica-

tion. So, to compute the inner product of the (col-

umn) vector x, try >> IP = x’*x;

For element-by-element multiplication use .* For ex-

ample, y = x.*x sets yi = (xi)
2.

So does y = x.^2.

http://uk.mathworks.com/moler/index_ncm.html
http://uk.mathworks.com/moler/index_ncm.html

2 MATRICES 2

2 Matrices

2.1. Declare a Matrix as

>> A = [3 -1 ; -2 3]

2.2. The entry in row i and column j of a matrix is given

by A(i,j)

The ith row of matrix A can be addressed as A(i,:),

and the jth column as A(:, j).

2.3. To compute the inverse of a matrix (where possible)

>> inv(A)

ans =

4.2857e-01 1.4286e-01

2.8571e-01 4.2857e-01

Other common linear algebra functions are also avail-

able, e.g., det, trace, rank .

2.4. Other useful functions include

• >> A = rand(m,n) – creates a matrix with

(uniformly distributed) random entries. Use randn

to get normally distributed entries. The func-

tions zeros(m,n) and ones(m,n) return decid-

edly nonrandom matrices.

• >> I = eye(n) – identity matrix

• >> E = eig(A) – (tries) to return the eigen-

values of A.

• >> norm(x) computes the 2-norm of the vec-

tor (or Matrix) x. norm(x,p) computes the p-

norm, and norm(x, inf) returns ‖x‖∞.

2.5. It A is an n × n matrix, and b is a vector with n

entries, we can solve Ax = b using x = A\b.

3 Functions

In MATLAB, you can write your own functions in several

ways, including,

Anonymous functions: Used for simple functions (one

line of code), e.g.,

>> f = @(x)sin(pi*x)

Try >> ezplot(f,[-4,4])

For functions of two (or more) variables, the syntax

is >> z = @(x,y)(exp(-x).*y.*(1-y)) Try:

>> [X,Y]=meshgrid(linspace(0,1));

>> mesh(z(X,Y)) or >> surf(z(X,Y))

Function files: Create a file called say, MyFunction.m.

Its first line should have the keyword function, fol-

lowed by the return values, the function name (same

as the file), and the argument list:

1 function [OutputArgs] = FileName (InputArgs)

For example, the following function takes a vector as

its argument, and if it is not a column vector, returns

its transpose.

1 function v = tocolumn (x)

2 i f (min(s ize (x)) ˜= 1 | | s ize (x , 1)==2)

3 v=x ;

4 else

5 v=x ’ ;

6 end

4 Initial value problems

4.1. Solving ODEs. MATLAB/Octave has a set of nu-

merical ODE solvers. Some are specialised; the work-

horse is ode45. The general form on an initial value

problem (IVP) is:

y ′(t) = f(t,y) t > t0

y(t0) = y0.

We’ll try and solve a particular example: y(0) = 1,

and

y ′(t) = y sin(t) t > 0,

on the interval [0, 4]. The exact solution is y(t) =

e1−cos(t).

First we define the RHS: >> f = @(t,y)(y.*sin(t));

Then solve the ODE: >> [T,Y] = ode45(f,[0,4],1);

Now define the true solution (for comparison):

>> y true = @(t)exp(1-cos(t));

And the plot the true and approximate solutions: >>

plot(T, Y, T, y true(T),’--o’)

Or their difference:

>> plot(T, Y-y true(T),’-o’)

4.2. Solving Coupled IVPs The approach for solving

single equations easily extends to systems, such as

y ′
1(t) = y2(t) sin(t), y1(0) = 1

y ′
2(t) = −10y1(t), y2(0) = 0.

The trick is to define the function, f, so that it returns

a vector:

>> f = @(t,y)([y(2).*sin(t);-10*y(1)])

Then solve on (for example) [0, 3]:

>> [t,y] = ode45(f,[0,3],[1,0]); Notice that we

had to provide the initial value as a vector too. To

plot the solutions:

>> plot(t,y(:,1), t,y(:,2),’--’)

	The Basics
	Matrices
	Functions
	Initial value problems

