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Outline

Monday, 4 December
09:30 – 10.30 Registration and Inauguration
10:45 – 11.45 1. Introduction to singularly perturbed problems NM
12:00 – 13:00 2. Numerical methods and uniform convergence NM
14:30 – 15:30 Tutorial (Convection diffusion problems) NM
15:30 – 16:30 Lab 1 (Simple FEMs in MATLAB) NM

Tuesday, 5 December
09:30 – 10:30 3. Finite difference methods and their analyses NM
10:45 – 11:45 4. Coupled systems of SPPDEs NM
14:00 – 16:00 Lab 2 (Fitted mesh methods for ODEs) NM

Thursday, 7 December
09:00 – 10:00 8. Singularly perturbed elliptic PDEs NM
10:15 – 11:15 9. Finite Elements in two and three dimensions NM
01:15 – 15:15 Lab 4 (Singularly perturbed PDEs) NM

Friday, 8 December
09:00 – 10:00 10. Preconditioning for SPPs NM
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When is a perturbation singular?

A regular perturbation

Consider the following example, taken from [O’Malley, 1997]:

x2 + εx− 1 = 0. (1)

Here ε is the perturbation parameter. It is real and positive. In cases of interest
it is small.

The solutions to (1) are

x =
−ε±

√
ε2 + 4

2
. (2)

If we let ε→ 0 in (1), the resulting problem has two solutions: x = ±1.

If we let ε→ 0 in (2), we again get x = ±1.

This is a regular perturbation

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §1 Intro to SPDEs 4/27



When is a perturbation singular?

A singular perturbation

Now consider a similar problem, but with the perturbation parameter
multiplying the second-order term:

εx2 + x− 1 = 0. (3)

The solutions to this problem are

x =
−1±

√
1 + 4ε

2ε
. (4)

If we set ε = 0 in (3), the resulting problem has a single solution: x = 1.

But if we let ε→ 0 in (4), the solutions tend to 1 and −∞.

This is a singular perturbation

(A similar explanation is given by Peter D. Miller (Michigan) in “Perturbation theory and

asymptotics”, §IV.5 of The Princeton Companion to Applied Mathematics.)
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Singularly Perturbed DEs

Compare the following two differential equations:

− (1 + ε)u ′′(x) + u(x) = f(x) on (0, 1), with u(0) = u(1) = 0. (5)

and
− εu ′′(x) + u(x) = f(x) on (0, 1), with u(0) = u(1) = 0. (6)

If we set ε = 0 in (5), nothing remarkable happens: we still have a well-posed
ODE.

But if we set ε = 0 in (6), the problem is not well-posed, since, unless
f(0) = f(1) = 0, we cannot satisfy u = f and the boundary conditions.

Question: What happens to (6) as ε→ 0?
Answer: Solutions develop “layers”.
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Singularly Perturbed DEs More formally

Linß provides a formal definition.

Singular functions [Linß, 2010, p2]

Let B be a function space with norm ‖ · ‖B. Let D ⊂ Rd be a parameter
domain. The continuous function u : D→ B, ε→ u(ε) is said to be regular for
ε→ ε? ∈ ∂D if there exists a function u? ∈ B such that:

lim
ε→ε?

‖uε − u
?‖B = 0.

Otherwise uε is said to be singular for ε→ ε?.

Singularly perturbed [Linß, 2010, p3]

Let (Pε) be a problem with solution u(ε) ∈ B for all ε ∈ D. We say (Pε) is
Singularly perturbed for ε→ ε? ∈ ∂D in the norm ‖ · ‖B if u is singular for
ε→ ε?.

(Although we won’t dwell on the point right now, it is important to note that
the concept is norm-dependent).
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Singularly Perturbed DEs More formally

The following, slightly less formal, characterisation is provided by Roos et al.

Singularly perturbed problems [Roos et al., 2008, p2]

[Singularly perturbed problems] are differential equations (ordinary or partial)
that depend on a small positive parameter, ε, and whose solutions (or their
derivatives) approach a discontinuous limit as ε approaches zero. Such
problems are said to be singularly perturbed, where we regard ε as a
perturbation parameter.
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Singularly Perturbed DEs Layers

Neither of the above definitions/characterisations discuss what happens as
ε→ 0. In this section, we shall see that, typically, solutions possess layers:
regions where the solution and/or its derivatives change rapidly.

The interest in SPPs stems from the fact the solutions have layers, and from
related challenges:

SPPs are used to model phenomena that feature interior and/or boundary
layers, a term introduced by Ludwig Prandtl1

Standard numerical schemes often compute poor approximations to
solutions to SPDEs; sometimes they are terrible.

Standard mathematical techniques can fail to give useful results. (“We
critically review the available error analysis in computational fluid
dynamics (CFD) and come to the conclusion that the existing error
estimates are meaningless in most cases of interest” 2).

The remainder of this section is devoted to SPDEs and their layers. Their
numerical solution will require more coffee.

1Prandtl. On the motion of a fluid with very small viscosity, Third World Congress of
Mathematicians, August 1903.

2Johnson et al. Numerics and Hydrodynamic Stability: Toward Error Control in Computational
Fluid Dynamics, SINUM 1995. [Johnson et al., 1995]
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Singularly Perturbed DEs Layers

Our first example is a simple reaction-diffusion equation.

A singularly perturbed differential equation

− ε2u ′′(x) + u(x) = ex on (0, 1), with u(0) = u(1) = 0. (7)

The solutions to this equation look
like

c0e
−x/ε︸ ︷︷ ︸

left layer

+ c1e
−(1−x)/ε︸ ︷︷ ︸

right layer

+(ex)/(1 − ε2)︸ ︷︷ ︸
regular part

The first two terms are “layer
terms”, that decay rapidly away
from the boundaries.
The third term is close to the
solution of the “reduced” problem,
obtained by setting ε = 0, and
neglecting the boundary conditions. 0 0.2 0.4 0.6 0.8 1
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The Bestiary

Here follows an incomplete list of SPDEs, with graphs of their solutions, and
some notes about what makes them interesting.

This will include

1 reaction-diffusion ODEs;

2 convection-diffusion problems;

3 coupled systems;

4 time-dependent (parabolic) problems;

5 all the above, but in two dimensions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An aside: [Collins English Dictionary] A bestiary is a moralising medieval
collection of descriptions (and often illustrations) of real and mythical animals.
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Reaction-diffusion equations

Example (A reaction-diffusion equation)

−ε2u ′′(x) + u(x) = cos(πx) on (0, 1), with u(0) = u(1) = 0.
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Solution features layers of width O(ε) near x = 0 and x = 1.

Away from layers u ≈ cos(πx).
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Reaction-diffusion equations

Example (Another reaction-diffusion equation)

−ε2u ′′(x) + u(x) = sin(πx) on (0, 1), with u(0) = u(1) = 0.
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The solution to the reduced equation satisfies the boundary conditions.

The solution does not feature layers. In fact, u = sin(πx)/(π2ε2 + 1).
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Convection-diffusion equations

Example (A convection-diffusion equation)

−εu ′′(x) + u ′(x) = x+ 1 on (0, 1), with u(0) = u(1) = 0.

The solution to this problem is

ε+ 3/2

1 − e−1/ε

(
e−1/ε − e−(1−x)/ε)

)
+ εx+ x2/2 + x;
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Notice that the diffusion
coefficient is ε, and not ε2.

The solution possesses a
single layer, near x = 1.

Elsewhere, the solution
resembles that of

u ′ = x+ 1.

Computing stable solutions
can be a challenge for this
problem.
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Coupled systems

The study of these simple-looking ODEs can rapidly become rather complex
when extended to coupled systems. Our simplest example has just two
equations.

Example (A coupled system of reaction-diffusion equations)

−

(
ε1 0
0 ε2

)2

u ′′ + B(x)u = f on (0, 1), with u(0) = u(1) = 0.

There are many variants possible for this problem, including

1 Systems of ` > 1 equations;

2 Systems of convection-diffusion equations;

3 Strongly coupled systems;

4 ....
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Coupled systems

Example (A coupled system of reaction-diffusion equations)

−

(
ε1 0
0 ε2

)2

u ′′ + B(x)u = f on (0, 1), with u(0) = u(1) = 0.

In spite of its simplicity, there is much that can be learned from this problem,
which itself is often reduced to three sub-classes:

(a) ε1 = ε2 � 1

(b) ε1 � ε2 = 1

(c) ε1 � ε2 � 1

Case (a) is the least interesting. Under reasonable assumptions on B, most
techniques (numerical and mathematical) for uncoupled problems extend
directly to this case.
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Coupled systems Case (b): ε1 � ε2 = 1

Example (Case (b): ε1 � ε2 = 1)

−

(
10−2 0

0 1

)2

u ′′+

(
2 −1
−1 2

)
u =

(
2 − x
1 + ex

)
on (0, 1), with u(0) = u(1) = 0.
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The component u1 features
(strong) layers, of width O(ε).

u2 features “weak” layers: u ′
2

and u ′′
2 are bounded

independent of ε, but u ′′′
2 is

not.
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Coupled systems Case (c): ε1 � ε2 � 1

This is the most interesting case, since solutions possess multiple, interacting
layers.

Example (Case (c): ε1 � ε2 � 1)

−

(
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0 10−2

)2

u ′′+

(
2 −1
−1 2

)
u =

(
2 − x
1 + ex

)
on (0, 1), u(0) = u(1) = 0.
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Both components clearly
features layers of width O(ε2).

u1 also features a layer of
width O(ε1).
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Reaction-diffusion PDEs

To orient ourselves, we begin by considering a regular problem.

A regular problem

−(uxx + uyy) + b(x,y)u = f(x,y), on (0, 1)2 u = 0 on the boundary.
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Reaction-diffusion PDEs

Next, we introduce the perturbation parameter.

A 2D singularly perturbed problem on the unit square

−ε2(uxx + uyy) + b(x,y)u = f(x,y), on (0, 1)2 u = 0 on the boundary.

Typically, on this domain, solutions feature four “edge” layers that behave
like exp(−x/ε) or exp(−y/ε).

They also have four corner layers, that behave like exp(−(x+ y)/ε).
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Reaction-diffusion PDEs

Of course, the problems don’t have to be posed on the unit square. Doing so
admits several interesting complications, though it also permits some
simplification of the method and analysis..

(This example is based on one devised by Natalia Kopteva; see, e.g.,
[Kopteva & Pickett, 2012].)
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Convection-diffusion PDEs

A 2D singularly perturbed convection-diffusion problem

−ε(uxx + uyy) + (ux + uy) = f(x,y), on (0, 1)2 u = 0 on the boundary.

The solution to this problem features layers near x = 1 and y = 1.

All these layers are of width O(ε).

The more general problem is

−ε∆u+ a · ∇u = f.

The location and width of the layers depend on a.
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Convection-diffusion PDEs

Finally, we consider a problem for which flow is parallel to one of the axes.

Another 2D singularly perturbed convection-diffusion problem

−ε(uxx + uyy) + ux = f(x,y), on (0, 1)2 u = 0 on the boundary.

The solution to this problem
features three layers: near x = 1,
y = 0, and y = 1.

The (“exponential”) layer near
x = 1 is of width O(ε).

The (“parabolic”) layers near
y = {0, 1} are of width O(

√
ε).
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Other problems

There are many other important variants on the above problem, with the most
obvious ones being:

1. Nonlinear problems.

2. Time dependent problems. Let Lε be any of the differential operators
considered above. Then solve

∂u

∂t
+ Lεu = f(·, t) on Ω× (t0, T ].

3. Systems of first-order problems.

4. High-order problems, in particular 4th-order DEs.

5. PDEs in higher dimensions.

Slightly less obvious are important classes of SPDEs with solutions that feature
interior layers. These can occur if, for example,

ODES: Problem data that are discontinuous or result in turning points;

ODEs: delay differential equations;

PDEs: discontinuities in boundary data, which propagate as interior layers.

PDEs: data incompatibilities.

PDEs: irregular domains.
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Discussion

For each of the above problems, away from the boundary, the reduced problem
is obtained by setting ε = 0, and neglecting some or all of the boundary
conditions. Layers then result when the solution to the reduced problem is
reconciled with the missing boundary condition(s).

Therefore, for many problems, we can get a good sense of what the solution
should look like by considering the reduced problem.
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Discussion
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