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Outline

Monday, 4 December
09:30 — 10.30 Registration and Inauguration
10:45 — 11.45 1. Introduction to singularly perturbed problems NM
12:00 — 13:00 2. Numerical methods and uniform convergence NM
14:30 — 15:30 | Tutorial (Convection diffusion problems) NM
15:30 — 16:30 | Lab 1 (Simple FEMs in MATLAB) NM
Tuesday, 5 December
09:30 — 10:30 | 3. Finite difference methods and their analyses NM
10:45 — 11:45 4. Coupled systems of SPPDEs NM
14:00 — 16:00 | Lab 2 (Fitted mesh methods for ODEs) NM
Thursday, 7 December
09:00 — 10:00 | 8. Singularly perturbed elliptic PDEs NM
10:15 - 11:15 9. Finite Elements in two and three dimensions NM
01:15 — 15:15 | Lab 4 (Singularly perturbed PDEs) NM
[ Friday, 8 December
[ 09:00 — 10:00 [ 10. Preconditioning for SPPs NM
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Primary references

The main mathematical content of this presentation, starting at Slide 7, closely
follows [Miller et al., 1996] and [Miller et al., 2012].

Important secondary references include [Protter and Weinberger, 1984].

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §3 FDM Analysis 4/21



Analysis

This section is devoted to the mathematical analysis of solutions to

one-dimensional reaction-diffusion equations, and finite difference methods for
approximating them.

Notation

The following notation applies in the remainder of this section.

s Q:=(0,1).
B QN ={0=xp <x; <---<xn =1} is a (possibly arbitrary) mesh with N
intervals.
QN denotes the interior of this mesh, i.e., QN ={x1, ..., xn_1}.
m |- || is the maximum norm on C(Q). That is [[u] := |[u]e0 = Jmax [u(x)|.
m || |la~ is the discrete max norm for mesh functions on QN.

Always: C is a constant that is independent of ¢ and N. It can take
different values in different places — even in the same expression.
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Analysis

Definition (Differential operator £)

Let O := (0,1). Given the function b € C*(Q), subject to b(x) > p2 > 0, and
parameter ¢ € (0, 1], the differential operator £ is defined, for all P € C?(Q) as

L =—e2p” + b

Definition (Reaction-diffusion equation)

Let u be the solution to
Lu=fon (0,1), with boundary conditions u(0) = u(1) =0, (1)

where f € C4(Q).

The imposition of homogeneous Dirichlet boundary conditions is only to
simplify the exposition. Results are easily extended to more general situations.
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Maximum principles

The following result is very standard, and elementary, but worth considering in
detail in order to be able to generalise later.

Maximum Principle If $(0) > 0, $(1) > 0, and L(x) > 0 for all x € Q, then
d(x) >0 forall x € Q.

[arguments on the board)|
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Maximum principles

There are many useful consequences of this. For example:

It easily follows that, if Lu =f and u(0) =u(1) =0, then

u(x)| < |If]l/B> for all x € Q.

[arguments on the board)]
(Here W = ||f|| /B2 is called a barrier function; we'll see more of these).

This shows that u is bounded. But for the analysis of a finite difference method, we
need bounds on derivatives of u.
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Bounds on derivatives

Lemma (Lemma 6.1 of [Miller et al., 2012])

[u]] < C(1+ 7).

[arguments on the board]
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Bounds on derivatives

The above bounds are correct, but not at all sharp: one expects that
[u”(x)| = €72 only near the boundary.

Our numerical analysis will require sharper, point-wise bounds obtained via a
decomposition of the solution of the DE as the sum of “regular” and “layer”
components:
u= v _ + w .
—~ =~

regular layer
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Solution decomposition

Solution decomposition

regular layer
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Roughly,

m v represents the solution away from the boundaries, but any layers present
are only weakly expressed.

m W accounts for the boundary conditions and, thus, the boundary layers,
but decays rapidly away from the boundaries.
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Solution decomposition Regular component

Definition (Reduced problem)

To get the reduced problem, set € = 0 in the reaction-diffusion equation (1),
and neglect the boundary conditions. That is, let vy be the solution to

b(x)vo(x) = f(x).

Regular part

Let v = vy + €2v;, where Vg is the reduced solution, and v; solves

Lv; = vy, v1(0) =v1(1) = 0.

From our earlier lemma, it is clear that [v{* (x)| < C(1 + ¢ %).
It follows that v(¥)(x)| < C(1 4 &7*2).
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Solution decomposition Layer component

Layer part

Since u =w + v, we have that w satisfies the homogeneous DE

—&2w” +bw =0 on Q, w=u—vondQ

Define the boundary layer function
Be(x) :=exp(—xp/e) + exp(—(1 —x)B/¢).
Also define the barrier function
PE(x) = CB. (x) = w(x)

for some suitable large C so that ¥ is non-negative on the boundary. Then
the Maximum Principle shows that [w(x)| < B.(x) on Q.
Now a minor variant on the argument that was used to bound [u™)| will give

that
W (x)] < Ce B, (x).
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The FDM and Shishkin mesh The FDM

The above solution decomposition tells use that the derivatives of u are large,
but decay rapidly away from the boundaries. So it will be of no surprise to
learn that there is a good strategy for solving these problems that involves a
mesh condensing near those boundaries.

First, for an arbitrary mesh ON ={xg,X1, ..., Xn} the standard second-order
finite-difference operator becomes

(62\)). _ 2 (Vi+1 —Vi Vi 7‘)171) .
Vohiathy hij1 hy

where hy = x; — X{_1.

It satisfies

E.g., [Miller et al., 2012, Lemma 4.1]

(Xi41 —Xi—1)|dls.
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The FDM and Shishkin mesh The FDM

Then the FDM is

uo :0,
LNU; = —25%U; + b(x) Uy = f(xy), i=1,...,N—1,
Uy =0.

This operator satisfies a discrete maximum principle, and an ¢-uniform stability
result: if ®y >0, Oy >0, and LNCDi > 0, then

LHENS \L @;.
[5

[arguments on the board]
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The FDM and Shishkin mesh The mesh

The piecewise uniform mesh of Shishkin is constructed as follows!:

1. Choose a mesh transition point

T, :min{%, % InN}.

2. Divide the domain into three sub-regions: [0, t.], [T.,1—7T.] and [1 — T, 1].

3. Subdivide those sub-regions to obtain the mesh.

1This choice is for the purpose of exposition. It is better to choose T. = min{1/4,2¢/B InN}.
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Analysis

Theorem (Theorem 6.4 of [Miller et al., 1996])

There is a constant C that is independent of ¢ and N such that

Huf UHQN < CN7'InN.

The proof proceeds by constructing a decomposition of the discrete solution
U =V + W that is analogous to the decomposition of the continuous solution:

V solves Vo =v(0), LNV, =1f(xi), Vn=v(1),
W solves Wo =w(0), LMW, =0, Wy =w(1).

We analyse these terms separately, i.e., we estimate |[v— V|| and |[w —W/||.
For ||[v—V/||... [arguments on the board]
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Analysis

On the region (0, T.) U (1 — 7, 1) the analysis for |[w — W/ is analogous...
[arguments on the board]
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Analysis

Finally, on the region [t.,1 — T.] one can exploit the fact that w and W have
decayed. In particular, for any x; € [t,1 —1]

B (xi) < Be(1) < 2exp(—1h/€) < 2exp(—InN) < CN7L.

[arguments on the board)]
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Wrap up

m The significance of the above result is that we have designed a scheme for
which we can prove that the pointwise error is independent of ¢.

m The result is easily extended to show that ||u— U|| < CN~'InN.

m The result is correct, but not sharp. Can the scheme and analysis be
improved so that [u— U|[an < CN72In? N? [Discuss!]

m The approach here, of using a piecewise uniform mesh, is very elementary.
A more sophisticated mesh, such as the graded mesh of Bakhvalov, can
yield a fully second-order scheme.
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