
Theory and Computation of SPDEs 1

GIAN Workshop on Theory and Computation of SPDEs, December 2017

Lab 1: Finite difference methods on uniform meshes
Niall Madden (Niall.Madden@NUIGalway.ie)

1 Boundary value problems

The general form a second-order, two point, linear BVP

is

−u ′′(x) + a(x)u ′(x) + b(x)u(x) = f(x) 0 < x < 1

u(0) = α, u(1) = β.

There are built-in functions for solving these, but we’ll

look at how to solve them using our own finite difference

method.

1.1 The algorithm

• Choose N, the number of mesh intervals

• Set up a set of N+ 1 equally spaced points:

0 = x0 < x1 < x2 < x3 · · · < xn−1 < xn = 1.

• Construct A, a (N+ 1)× (N+ 1) matrix of zeros,

except for

– A1,1 = 1

– For i = 2, 3, . . . ,N

Ai,j =


−1/h2 j = i− 1

2/h2 + bk j = i

−1/h2 j = i+ 1

0 otherwise.

– AN,N+1 = 1

In MATLAB this could be implemented as

A(1 ,1) = 1 ;

for i =2:N

A(i , i −1) = −1/hˆ2 ;

A(i , i) = 2/hˆ2 + r (x (i)) ;

A(i , i +1) = −1/hˆ2 ;

end

A(N+1,N+1)=1;

(We would not do this in practice: it is very slow).

• Solve the linear system: u = A \ B

where B(i)=f(x(i)).

Download the script FiniteDifference.m from http://

www.maths.nuigalway.ie/~niall/TCSPDEs2017/ and try

it out.

Consider the problem:

−u ′′(x) + u(x) = 1 + x on (0, 1), (1a)

u(0) = u(1) = 0. (1b)

The solution to this is

u(x) = 1 + x−
(
e−x(e2 − 2e) + ex(2e− 1)

)
/(e2 − 1).

Use this to test the code. In particular, does the error

tend to zero as N→∞? If so, how rapidly? (These two

questions can also be rephrased as “Does the method

converge? If so, how quickly?)

1.2 The Profiler

This is not a good way to construct a linear system.

Whenever you write a MATLAB program, particularly

for solving differential equations, you should use the pro-

filer to find any bottle-necks in the code.

If most of the time is not spent solving the linear system,

then there is a problem.

Another simple method for code-timing are the tic and

toc functions.

1.3 Some Optimisations

To improve, and speed up this code, initialise the matrix

A and vector b:

A = zeros(N+1, N+1); b = zeros(N+1,1)

However, the real improvement is to avoid using loops to

initialise matrices or vectors.

For vectors, this is easy:
b = [alpha; r(x(2:N)); beta];

For Matrices, we need sparse matrices. To initialise:
A = sparse(N+1, N+1);

However, the best way to use it is as:
S = sparse(i,j,s)

which sets S(i(k),j(k)) = s(k). This can be used as
follows:

A = sparse(2:N, 1:N-1, -1/h^2) + ...

sparse(2:N, 2:N, 2/h^2+r(x(2:N))) + ...

sparse(2:N, 3:N+1, -1/h^2);

2 Exercises

1. Change the equation in (1a) to include a non-zero

convective term (if you like, remove the reaction

term entirely, i.e., set b = 0).

2. Produce a program like that above that solves this

method using standard central differences. Verify

that the solution is oscillatory.

3. Now ally upwinding. Verify the order of conver-

gence.

http://www.maths.nuigalway.ie/~niall/TCSPDEs2017/FiniteDifference.m
http://www.maths.nuigalway.ie/~niall/TCSPDEs2017/
http://www.maths.nuigalway.ie/~niall/TCSPDEs2017/

	Boundary value problems
	The algorithm
	The Profiler
	Some Optimisations

	Exercises

