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Lab 4: Singularly Perturbed PDEs
Niall Madden (Niall.Madden@NUIGalway.ie) http://www.maths.nuigalway.ie/~niall/TCSPDEs2017

This lab involves solving a singularly perturbed reaction-diffusion equation in two dimensions using a finite

difference technique. In Lecture 7 we required certain compatibility conditions to hold in order for the analysis

to be valid. We will experiment with these conditions to see if, in practice, they are necessary. We will also

experiment with using a graded mesh to solve the PDE robustly.

The choice of finite differences for this lab is due to convenience. Implementing a FEM would involve

additional issues regarding quadrature and error estimation, which we cannot cover in the time allowed. If you

are interested in FEMs, ask Niall for some FE code that corresponds to the FD code presented here.

1 The finite difference method

We will solve the following PDE numerically:

−ε2(uxx + uyy) + b(x,y)u = f(x,y) on Ω := (0, 1)2, (1a)

and with the boundary conditions

u(x,y) = g(x,y) for (x,y) ∈ ∂Ω. (1b)

Denote the mesh points of an arbitrary rectangular mesh as (xi,yj) for i, j ∈ {0, 1, . . . ,N}, write the local

mesh widths as hi = xi − xi−1 and kj = yj − yj−1, and let  hi = (xi+1 − xi−1)/2, and kj = (yj+1 − yj−1)/2.

The scaled (symmetrised) 5-point, second-order, central difference operator (discrete Laplacian) is
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Then the finite difference scheme for the non-boundary points is

LN := −ε2∆N + h̄ik̄jb(xi,yj) = h̄ik̄jf(xi,yj). (3)

2 Ordering the unknowns

To realise the method above, we have to write it as a system of (N+ 1)2 linear equations: AU = B.

One of the required steps is to choose a numbering of the grid variables, so that they can be expressed as

entries in a vector. We will take the usual choice – lexicographical ordering.

It’s useful to be adept at switching between

• “grid ordering”: the FD solution is expressed as a matrix. In MATLAB, if U is a (N+1)×(N+1) matrix,

then the approximate solution at (xi,yj) is represented as U(i+1,j+1). (Recall that MATLAB indexes

all arrays from 1).

• lexicographical ordering : the FD solution is expressed as a vector. In MATLAB, if U is a vector with

(N+ 1)2 entries, the approximate solution at (xi,yj) is represented by U(k) where k = i+ 1 + j(N+ 1).

• We need both these representations: the vector one is the solution to the linear system, and the matrix

one is used, for example, when plotting the solution. To switch between them, try

U = reshape (U, [ ] , N+1) ’ ; % vector-to-matrix
U = reshape (U’ , [ ] , 1) ; % matrix-to-vector
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3 The FD solver

The method described above is implemented in the MATLAB function Solve 2DRD.m, which can be downloaded

from http://www.maths.nuigalway.ie/~niall/TCSPDEs2017 This is a MATLAB function file. If N is a

positive integer, then...

x = linspace (0,1,N+1) ’; % x-mesh

y = linspace (0,1,N+1) ’; % y-mesh

b = @(x,y)(x*0+y*0+1);

f = @(x,y,epsilon)(x*0+y*0+1);

g = @(x,y)(x.*y*0);

Solve_2DRD (1/10, x, y, b, f, b);

will return the numerical solution to

−
1

100
∆u+ u = 1 on (0, 1)2,

with homogeneous Dirichlet boundary conditions, and solved on a uniform mesh with N intervals in each

coordinate direction.

Read this code to understand how it works. Some aspects are non-obvious, mainly due to the banded

structure of the system matrix.

The test harness Test 2DRD.m runs this programme for various values of N and ε. To run it, you’ll also

need

• Problem Data.m, which stores the true solution to an artificially created problem that features layers

near x = 0 and y = 0 (only), as well as the corresponding right-hand side.

• From Lab 1: Make 1D Fitted Mesh.m, which can generate a uniform or Shishkin mesh, as required.

The error is computed using this true solution. Verify that the code gives the expected results.

4 The double mesh principle

The test case provided for in Problem Data.m is limited in its uses. If we decide to change the problem data,

we have to construct a new solution. Often this is inconvenient or impossible. So it can be good practice to use

the double mesh principle:

• Given a mesh Ω̄N with N intervals in each coordinate direction, construct a new one with 2N intervals

in each direction, by bisecting each interval of the original one.

• Solve the problem on this mesh, and denote it Ũ.

• Estimate the error as ‖U− Ũ‖Ω̄N .

This is known to give a reliable estimate for the rate of convergence. (Aside: However, it underestimates the

error by a factor of 4/3. Question: why? Hint: Think extrapolation).

Modify the code to estimate the error using the double mesh principle.

5 Compatibility conditions

In Lecture 8 we reviewed the compatibility conditions derived in [Han and Kellogg, 1990]. As well as requiring

that f,b ∈ C2,α(Ω̄), the gi ∈ C4,α([0, 1]), at c1 = (0, 0) we needed these are

g1 = g2, (4a)

−ε2
( ∂2

∂x2
g1 +

∂2

∂y2
g2

)
+ bg1 = f, 1 (4b)

1Actually, g1 and g2 are functions of a single variable, x and y respctively, but it is notationally convienent to express these
ordinary derivatives as partial derivaties, particularly in (??).

http://www.maths.nuigalway.ie/~niall/TCSPDEs2017
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http://www.maths.nuigalway.ie/~niall/NASPDEs2016/Problem_Data.m
http://www.maths.nuigalway.ie/~niall/NASPDEs2016/Make_1D_Fitted_Mesh.m
http://www.maths.nuigalway.ie/~niall/NASPDEs2016/Problem_Data.m
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Conditions analogous to (4) are satisfied at the other corners. Then u ∈ C4,α.

Construct examples that violate these conditions in various ways, and determine the impact they have on

the order of convergence.

6 A graded mesh

So far we have studied only the piecewise uniform mesh of Shishkin. There are many alternatives, but perhaps

the best known is the graded mesh of Bakhvalov [Bakhvalov, 1969]. It is described in [Linß, 2010, §2.1.1] as

being the mesh with the generating function: ψ, defined as

ψ(t) =


χ(t) := −

σε

β
ln (1 − t/q) , for t ∈ [0, τB],

φ(t) := χ(τB) + χ
′(τB)(t− τB), for t ∈ [τB, 1/2],

1 −ψ(1 − t), for t ∈ (1/2, 1],

where the Bakhvalov mesh transition point τB is chosen so that ψ ∈ C1[0, 1]. The mesh parameter q controls

the proportion of the mesh points in the layer regions (so q = 1/3 is a typical value). The parameter σ needs

to be at least as large as the formal order of the scheme. Taking, e.g, σ = 2.5 for this test problem should give

reasonable results.

There is a minor difficulty in implementing this mesh: one must solve a nonlinear problem to obtain τB so

that ψ ∈ C1.

This is implemented as Make Bakhvalov Mesh.m. Incorporate this into your code, and compare with the

accuracy obtained using the Shishkin mesh.
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